
Chapter 1

Demo problem: Large-displacement post-buckling
of a pressure-loaded thin-walled elastic ring –
displacement-control techniques

In this example we study a more challenging beam problem: The non-axisymmetric buckling of a thin-walled elastic
ring, loaded by a spatially-constant external pressure, pext . For sufficiently small positive (or arbitrarily large
negative) values of pext the ring deforms axisymmetrically and in this mode it is very stiff, implying that large changes
in pressure are required to change its radius. However, if pext exceeds a critical threshold, the axisymmetric
configuration becomes unstable, causing the ring to buckle non-axisymmetrically. Once buckled, the ring is much
more flexible and small changes in pext are sufficient to induce dramatic changes in its shape.

The rapid change in stiffness following the buckling makes it difficult to compute strongly buckled solutions by
continuation methods as the solution computed for a certain value of pext may represent a poor approximation of
the solution at a slightly larger pressure. In extreme cases, this can cause the Newton method (whose convergence
relies on the provision of good initial guesses for the unknowns) to diverge.

We will demonstrate the use of so-called "displacement control" techniques to overcome these problems.
Displacement-control techniques are useful in problems in which some a-priori knowledge about the expected
displacement field allows us to re-formulate the problem. Rather than prescribing the load on the elastic solid and
computing the displacement field, we prescribe the displacement of a carefully-selected material "control" point and
regard the load required to achieve this displacement as an unknown.
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Non-axisymmetric buckling of a pressure-loaded, thin-walled elastic ring

We wish to compute the deformation of a linearly-elastic, circular ring of undeformed radius R0 and wall thickness
h∗, subject to a spatially-constant external pressure p∗ext. We choose the undeformed radius R0 as the lengthscale
for the non-dimensionalisation of the problem and assume that h = h∗/R0 ≪ 1 , justifying the use of beam theory.
As discussed in the previous example we scale the pressure on the ring's effective Young's modulus,
pext = p∗ext/Eeff , where Eeff = E/(1−ν2) . We use the non-dimensional arclength ξ ∈ [0, 2π] along the ring's
undeformed centreline as the Lagrangian coordinate and parametrise the position vector to the ring's undeformed
centreline as

rw(ξ) =

(
cos(ξ)
sin(ξ)

)
.

We wish to compute the position vector Rw(ξ) to the deformed ring's centreline.
Here is a sketch of the problem:

Figure 1.1 Sketch of the buckling ring.

Note that we have chosen the Eulerian coordinate axes so that they coincide with the ring's lines of symmetry.

1.1 The expected deformation and the displacement-control formulation
of the problem

Standard linear stability analysis [see, e.g., G.J. Simitses "An introduction to the elastic stability of structures",
Prentice-Hall, (1976)] predicts the ring to become unstable to non-axisymmetric perturbations with an azimuthal
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wavenumber of N = 2 at a pressure of

p
[buckl]
ext = 3× 1

12
h3.

For pext > p
[buckl]
ext we therefore expect the ring to deform into a shape similar to the one indicated by the dashed

line in the above sketch. As the ring buckles non-axisymmetrically, the material point on the vertical symmetry line
(i.e. the material point with Lagrangian coordinate ξ = π/2 ) moves radially inwards. This makes it an excellent
control point for this problem as we can "sweep" through the entire range of the ring's post-buckling deformation
by varying its x2 – coordinate from Rctrl = 1 (corresponding to the undeformed, axisymmetric configuration) to
Rctrl = 0 (corresponding to a configuration in which the ring is collapsed to the point of opposite wall contact). We
note that Flaherty, Keller & Rubinow's analysis [SIAM J. Appl. Math 23, 446–455 (1972)], based on an inextensible
beam model, predicts opposite wall contact to occur at an external pressure of

p
[owc]
ext = 5.22× 1

12
h3.

To apply displacement control we change the formulation of the problem from

Original formulation of the problem

Determine the position vector to the centreline of the deformed ring, Rw(ξ) , in terms of the Lagragian coordinate
ξ ∈ [0, 2π] , for a given value of the external pressure pext ∈ [0, 5.22× h3/12] .

to

Displacement-control formulation of the problem

Determine the position vector to the centreline of the deformed ring, Rw(ξ) , in terms of the Lagragian coordinate
ξ ∈ [0, 2π] , for an external pressure pext that is such that the vertical coordinate of the control point is equal to
Rctrl, i.e.

Rw(ξ = π/2) · e2 = Rctrl,

where Rctrl ∈ [0, 1] is given.

1.2 Results

The figure below shows computed ring shapes for h∗/R0 = 1/20. They were obtained in two phases: During the
first phase of the computation we subjected the ring to a load of the form

f =

(
pext − pcos cos(2ξ)

)
N

where N is the outer unit normal on the deformed ring and pcos ≪ 1 is a small cosinusoidal perturbation to the
external pressure which forces the ring to buckle "in the right direction". The undeformed configuration was used
as the initial guess for an initial computation with pext = 0 [or, in the case of displacement control, Rctrl = 1 ].
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Subsequently we increased pext [or decreased Rctrl ] in small steps, using the previously computed solutions for
the displacement field [and pext ] as initial guesses for the unknowns. This procedure was continued until the ring
was collapsed up to the point of opposite wall contact. During the second phase, we set pcos = 0 and reversed the
procedure to re-trace the deformation to the axisymmetric state.

Figure 1.2 Computed ring shapes.

The figure below illustrates the load/displacement characteristics computed by this procedure. The graph shows
the radii of two material points on the ring: The green line shows the radius R1 = Rctrl of the control point; the
red line the radius R2 of the material point located at ξ = 0, i.e. the material point located on the ring's second
line of symmetry. (Because of the symmetry of the buckling pattern this line may also be interpreted as the load-
displacement curve for the control point when the ring buckles in the "opposite" direction). The dash-dotted blue
line shows the load/displacement curve when the ring deforms axisymmetrically. In this mode, the radii of the two
material points are obviously identical. Finally, the dashed lines shows the load/displacement path when the ring is
subjected to a non-zero perturbation pressure, pcos ̸= 0 , which deforms it non-axisymmetrically so that R1 ̸= R2

even for pext < p
[buckl]
ext .
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Figure 1.3 Bifurcation diagram for a buckling ring.

The diagram clearly illustrates the enormous change in stiffness when the ring changes from the axisymmetric to the
non-axisymmetric regime. The non-axisymmetric regime emanates from the axisymmetric state (via a supercritical
bifurcation at a pressure of pext = 3.0 × h3/12 , as predicted by the linear stability analysis) and opposite wall
contact occurs at pext = 5.22×h3/12 , in perfect agreement with Flaherty, Keller & Rubinow's theoretical analysis.

1.3 Applying displacement control in oomph-lib

To facilitate the solution of solid mechanics problems with displacement-control techniques, oomph-lib provides
a DisplacementControlElement, which may be used to add the displacement control constraint to the
global system of equations that is solved by Newton's method. Applying displacement control in a solid mechanics
problem involves the following straightforward steps:

1. Formulate the solid mechanics problems in its "standard form":

In this formulation the (scalar) load level is prescribed and the displacements are regarded as unknowns.

2. Change the representation of the (scalar) load level to allow it to be an unknown in the Problem:

In the original formulation, the load level is likely to have been represented by a double precision num-
ber. To allow the load level to be regarded as an unknown, it must be represented by a value in a Data
object. Currently, oomph-lib's DisplacementControlElement expects the load level to be the
one-and-only value in the load Data object. We note that computations with a prescribed load are still
possible and simply require pinning of the value that represents the load.

3. "Tell" the solid mechanics elements that the load level is a (potential) unknown:

Since the load on the solid mechanics elements affects their residuals, their elemental Jacobian matri-
ces (which contain the derivatives of the entries in the elemental residual vector with respect to all unknowns
that affect it) must take the dependence on the (potentially) unknown load level into account. This may be
achieved by adding the Data object that stores the load level to the element's external Data (i.e. Data
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whose values affect the element's residual vector, but whose values are not determined by the element).
External Data is automatically included in an element's equation numbering procedure. Furthermore, since
the elemental Jacobian matrices of SolidFiniteElements are generated by finite-differencing, the
derivatives of the element's residual vector with respect to the load level are computed automatically. Conse-
quently, the application of displacement control does not require a re-implementation of the solid mechanics
elements.

4. Identify a material point in the solid that can serve as a "control point":

Ideally, this control point should move monotonically along one of the (Eulerian) coordinate directions
as the deformation of the solid body increases.

5. Create a DisplacementControlElement and add it to the Mesh.

The DisplacementControlElement adds the displacement constraint to the global system of
equations and thus provides the additional equation required to determine the unknown load level. We note
that the DisplacementControlElement has two constructors:

• The first version expects a pointer to the Data object whose one-and-only value contains the unknown
load level. This version of the constructor is appropriate in cases where the load Data has already
been created elsewhere (as described above).

• The second version of the constructor creates the required load Data object internally and provides
access to it via a pointer-based access function.

The section "Internal" and "external" Data in elements and "global" Data in Problems provides a more de-
tailed discussion of when to use which version of the constructor.

6. Done!

Set the desired value of the control displacement and solve the problem.

The driver code discussed below illustrates these steps.

1.4 Global parameters and functions

The namespace Global_Physical_Variables, used to define the problem parameters and the load func-
tion, is very similar to that used in the previous example without displacement control. They main differ-
ence is that the adjustable load (the external pressure pext ) is now defined as a Data value, rather than a double
precision number. This allows it to become an unknown in the problem when displacement control is used.
//=======start_of_namespace=========================
/// Namespace for physical parameters
//==================================================
namespace Global_Physical_Variables
{

/// Nondim thickness
double H=0.05;

/// Prescribed position (only used for displacement control)
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double Xprescr = 1.0;

/// Perturbation pressure
double Pcos=0.0;

/// Pointer to pressure load (stored in Data so it can
/// become an unknown in the problem when displacement control is used
Data* Pext_data_pt;

/// Load function: Constant external pressure with cos variation to
/// induce buckling in n=2 mode
void press_load(const Vector<double>& xi,

const Vector<double> &x,
const Vector<double>& N,
Vector<double>& load)

{
for(unsigned i=0;i<2;i++)
{
load[i] = (Pext_data_pt->value(0)-Pcos*cos(2.0*xi[0]))*N[i];
}

}

/// Return a reference to the external pressure
/// load on the elastic ring.
/// A reference is obtained by de-referencing the pointer to the
/// data value that contains the external load
double &external_pressure()
{return *Pext_data_pt->value_pt(0);}

} // end of namespace

1.5 The driver code

The main function builds two different versions of the problem, demonstrating the use of displacement control in
the cases when the Data object that contains the adjustable load already exists, or has to be created by the
DisplacementControlElement, respectively. The two versions only differ in the The constructor.
//=======start_of_main=================================================
/// Driver for ring test problem
//=====================================================================
int main()
{
// Number of elements
unsigned n_element = 13;
// Displacement control?
bool displ_control=true;

// Label for output
DocInfo doc_info;

// Demonstrate how to use displacement control with already existing load Data
//----------------------------------------------------------------------------
{
bool load_data_already_exists=true;
//Set up the problem
ElasticRingProblem<HermiteBeamElement>
problem(n_element,displ_control,load_data_already_exists);

// Output directory
doc_info.set_directory("RESLT_global");

// Do static run
problem.parameter_study(doc_info);

}
// Demonstrate how to use displacement control without existing load Data
//-----------------------------------------------------------------------
{
bool load_data_already_exists=false;
//Set up the problem
ElasticRingProblem<HermiteBeamElement>
problem(n_element,displ_control,load_data_already_exists);

// Output directory
doc_info.set_directory("RESLT_no_global");

// Reset counter
doc_info.number()=0;
// Do static run
problem.parameter_study(doc_info);

}
} // end of main
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1.6 The problem class

The problem class is very similar to the one used
in the previous example without displacement control. Here we store the number of solid mechanics
elements in the Problem's private member data since we will add the DisplacementControlElement to the
mesh.
//========start_of_problem_class========================================
/// Ring problem
//======================================================================
template<class ELEMENT>
class ElasticRingProblem : public Problem
{
public:

/// Constructor: Number of elements and flags for displ control
/// and displacement control with existing data respectively.
ElasticRingProblem(const unsigned &n_element,

bool& displ_control,
bool& load_data_already_exists);

/// Access function for the specific mesh
OneDLagrangianMesh<ELEMENT>* mesh_pt()
{
return dynamic_cast<OneDLagrangianMesh<ELEMENT>*>(Problem::mesh_pt());
}

/// Update function is empty
void actions_after_newton_solve() {}

/// Update function is empty
void actions_before_newton_solve() {}

/// Doc solution
void doc_solution(DocInfo& doc_info, ofstream& trace_file);

/// Perform the parameter study
void parameter_study(DocInfo& doc_info);
private:

/// Use displacement control?
bool Displ_control;

/// Pointer to geometric object that represents the undeformed shape
GeomObject* Undef_geom_pt;

/// Number of elements in the beam mesh
unsigned Nbeam_element;
}; // end of problem class

1.7 The constructor

The first half of the constructor is similar to the one used in the previous example without displacement
control. We create a GeomObject (an Ellipse with unit half axes) to define the ring's undeformed geometry,
and build the 1D Lagrangian mesh. Note that, because of the symmetry of the buckling pattern, we only discretise
one quarter of the domain.
//======start_of_constructor============================================
/// Constructor for elastic ring problem
//======================================================================
template<class ELEMENT>
ElasticRingProblem<ELEMENT>::ElasticRingProblem
(const unsigned& n_element, bool& displ_control, bool& load_data_already_exists) :
Displ_control(displ_control),Nbeam_element(n_element)
{
// Undeformed beam is an elliptical ring
Undef_geom_pt=new Ellipse(1.0,1.0);
// Length of the doamin (in terms of the Lagrangian coordinates)
double length=2.0*atan(1.0);
//Now create the (Lagrangian!) mesh
Problem::mesh_pt() =
new OneDLagrangianMesh<ELEMENT>(n_element,length,Undef_geom_pt);

Next we apply the symmetry boundary conditions: Zero vertical [horizontal] displacements and infinite [zero] slope
at ξ = 0 [at ξ = π/2 ]. (See the previous example for a more detailed discussion of the boundary
conditions for beam elements.)
// Boundary condition:
// Bottom:
unsigned ibound=0;
// No vertical displacement
mesh_pt()->boundary_node_pt(ibound,0)->pin_position(1);
// Infinite slope: Pin type 1 (slope) dof for displacement direction 0
mesh_pt()->boundary_node_pt(ibound,0)->pin_position(1,0);
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// Top:
ibound=1;
// No horizontal displacement

mesh_pt()->boundary_node_pt(ibound,0)->pin_position(0);
// Zero slope: Pin type 1 (slope) dof for displacement direction 1
mesh_pt()->boundary_node_pt(ibound,0)->pin_position(1,1);

We now distinguish between the cases with and without displacement control:

• Case 1: No displacement control

If we don't use displacement control, we create the Data object whose one-and-only value stores the
adjustable load level (the external pressure), and store the pointer to the newly created Data object in
Global_Physical_Variables::Pext_data_pt. Since the value of the external pressure is pre-
scribed (i.e. not an unknown in the problem), we pin the value.

// Normal load incrementation
//===========================
if (!Displ_control)
{
// Create Data object whose one-and-only value contains the
// (in principle) adjustable load
Global_Physical_Variables::Pext_data_pt=new Data(1);

//Pin the external pressure because it isn’t actually adjustable.
Global_Physical_Variables::Pext_data_pt->pin(0);

• Case 2: Displacement control

If displacement control is used, we identify the control point (the material point at the "end" of the last
element in the mesh) and the (Eulerian) coordinate direction (the vertical coordinate) in which its position is
to be controlled:

// Displacement control
//=====================
else
{
// Choose element in which displacement control is applied: the last one
SolidFiniteElement* controlled_element_pt=
dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(Nbeam_element-1));

// Fix the displacement in the vertical (1) direction...
unsigned controlled_direction=1;
//... at right end of the control element
Vector<double> s_displ_control(1);
s_displ_control[0]=1.0;

// Pointer to displacement control element
DisplacementControlElement* displ_control_el_pt;

– Case 2a: Load Data does not yet exist

We can now call the constructor for the DisplacementControlElement:

// Build displacement control element
displ_control_el_pt=
new DisplacementControlElement(controlled_element_pt,

s_displ_control,
controlled_direction,
&Global_Physical_Variables::Xprescr);

This version of the constructor creates the load Data object whose one-and-only value stores the
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adjustable load. We obtain a pointer to the newly-created Data object from the access function
DisplacementControlElement::displacement_control_load_pt() and store it in
Global_Physical_Variables::Pext_data_pt to make it accessible to the load function
Global_Physical_Variables::press_load(...)

// The constructor of the DisplacementControlElement has created
// a new Data object whose one-and-only value contains the
// adjustable load: Use this Data object in the load function:
Global_Physical_Variables::Pext_data_pt=displ_control_el_pt->
displacement_control_load_pt();

– Case 2b: The load Data already exists

In some applications, the Data object that specifies the adjustable load level might already have
been created elsewhere in the Problem. For such cases, oomph-lib provides an alternative
constructor whose argument list includes the pointer to the already-existing load Data object. To
demonstrate its use we create a suitable Data object and store it in the Problem's "global" Data
(see "Internal" and "external" Data in elements and "global" Data in Problems for a more detailed dis-
cussion of this step) and pass it to the constructor:

// Demonstrate use of displacement control with some existing data
//----------------------------------------------------------------
else
{
// Create Data object whose one-and-only value contains the
// adjustable load
Global_Physical_Variables::Pext_data_pt=new Data(1);

// Currently, nobody’s "in charge of" this Data so it won’t
// get included in any equation numbering schemes etc.
// --> declare it to be "global Data" for the Problem
// so the Problem is in charge and will perform such tasks.
add_global_data(Global_Physical_Variables::Pext_data_pt);

// Build displacement control element and pass pointer to the
// already existing adjustable load Data.
displ_control_el_pt=
new DisplacementControlElement(controlled_element_pt,

s_displ_control,
controlled_direction,
&Global_Physical_Variables::Xprescr,
Global_Physical_Variables::Pext_data_pt);

}

In both cases, we add the newly created DisplacementControlElement to the mesh to ensure
that it is included in the Problem.

// Add the displacement-control element to the mesh
mesh_pt()->add_element_pt(displ_control_el_pt);

}

Next, we execute the usual loop over the elements to pass the pointers to the problem's non-dimensional parameters
the elements. If displacement control is used, we also pass the pointer to the load Data object to the elements'
external Data to indicate that the element's residual vectors depends on the unknown load. Finally, we set up the
equation numbering scheme.
//Loop over the elements to set physical parameters etc.
for(unsigned i=0;i<Nbeam_element;i++)
{
//Cast to proper element type
ELEMENT *elem_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(i));
// Set wall thickness
elem_pt->h_pt() = &Global_Physical_Variables::H;

// Function that specifies load Vector
elem_pt->load_vector_fct_pt() = &Global_Physical_Variables::press_load;
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//Assign the undeformed beam shape
elem_pt->undeformed_beam_pt() = Undef_geom_pt;
// Displacement control? If so, the load on *all* elements
// is affected by an unknown -- the external pressure, stored
// as the one-and-only value in a Data object: Add it to the
// elements’ external Data.
if (Displ_control)
{
//The external pressure is external data for all elements
elem_pt->add_external_data(Global_Physical_Variables::Pext_data_pt);

}
}

// Do equation numbering
cout « "# of dofs " « assign_eqn_numbers() « std::endl;
} // end of constructor

1.8 Post-processing

The post-processing function documents the ring shapes and adds the load/displacement characteristics of the two
material points on the ring's symmetry lines to the trace file.
//=======start_of_doc=====================================================
/// Document solution
//========================================================================
template<class ELEMENT>
void ElasticRingProblem<ELEMENT>::doc_solution(DocInfo& doc_info,

ofstream& trace_file)
{
ofstream some_file;
char filename[100];

// Number of plot points
unsigned npts=5;

// Output solution
sprintf(filename,"%s/ring%i.dat",doc_info.directory().c_str(),

doc_info.number());
some_file.open(filename);
mesh_pt()->output(some_file,npts);
some_file.close();
// Local coordinates of plot points at left and right end of domain
Vector<double> s_left(1);
s_left[0]=-1.0;
Vector<double> s_right(1);
s_right[0]=1.0;
// Write trace file: Pressure, two radii
trace_file
« Global_Physical_Variables::Pext_data_pt->value(0)/
(pow(Global_Physical_Variables::H,3)/12.0)
« " "
« dynamic_cast<ELEMENT*>(mesh_pt()->

element_pt(0))->interpolated_x(s_left,0)
« " "
« dynamic_cast<ELEMENT*>
(mesh_pt()->element_pt(Nbeam_element-1))->interpolated_x(s_right,1)
« std::endl;

} // end of doc

1.9 The parameter study

We start by opening a trace file to record the load/displacement characteristics, and output the initial configuration.
//========start_of_run=====================================================
/// Solver loop to perform parameter study
//=========================================================================
template<class ELEMENT>
void ElasticRingProblem<ELEMENT>::parameter_study(DocInfo& doc_info)
{
//Open a trace file
char filename[100];
sprintf(filename,"%s/trace.dat",doc_info.directory().c_str());
ofstream trace_file(filename);
trace_file « "VARIABLES=\"p_e_x_t\",\"R_1\",\"R_2\"" « std::endl;
trace_file « "ZONE" « std::endl;
//Output initial data
doc_solution(doc_info,trace_file);

Next we set up the increment of the control parameter, choosing the displacement or load increments such that the
ring's deformation is increased from the axisymmetric initial state to total collapse with opposite wall contact in 11
steps.
// Number of steps
unsigned nstep= 11; //51;
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// Increments
double displ_increment=1.0/double(nstep-1);
double p_buckl=3.00*pow(Global_Physical_Variables::H,3)/12.0;
double p_owc =5.22*pow(Global_Physical_Variables::H,3)/12.0;
double pext_increment=(p_owc-p_buckl)/double(nstep-1);

// Set initial values for parameters that are to be incremented
Global_Physical_Variables::Xprescr=1.0+displ_increment;
Global_Physical_Variables::Pext_data_pt->set_value(0,p_buckl-pext_increment);

Without displacement-control the Newton method can require a large number of iterations, therefore we increment
the maximum number of iterations.
// Without displacement control the Newton method converges very slowly
// as we approach the axisymmetric state: Allow more iterations before
// calling it a day...
if (Displ_control)
{
Max_newton_iterations=100;
}

We start the parameter study by increasing the ring's compression (either by increasing the external pressure or by
reducing the x2 - coordinate of the control point) with pcos > 0 to induce buckling in the desired direction.
// Downward loop over parameter incrementation with pcos>0
//--------------------------------------------------------

/// Perturbation pressure
Global_Physical_Variables::Pcos=1.0e-5;
// Downward loop over parameter incrementation
//---------------------------------------------
for(unsigned i=1;i<=nstep;i++)
{

// Displacement control?
if (!Displ_control)
{
// Increment pressure
Global_Physical_Variables::external_pressure() += pext_increment;

}
else
{
// Increment control displacement
Global_Physical_Variables::Xprescr-=displ_increment;

}

// Solve
newton_solve();

// Doc solution
doc_info.number()++;
doc_solution(doc_info,trace_file);

} // end of downward loop

Then we reset the perturbation pressure to zero and reduce the ring's collapse by decreasing the external pressure
(or by increasing the x2 - coordinate of the control point).
// Reset perturbation pressure
//----------------------------
Global_Physical_Variables::Pcos=0.0;

// Set initial values for parameters that are to be incremented
Global_Physical_Variables::Xprescr-=displ_increment;
Global_Physical_Variables::external_pressure() += pext_increment;
// Start new zone for tecplot
trace_file « "ZONE" « std::endl;
// Upward loop over parameter incrementation
//------------------------------------------
for(unsigned i=nstep;i<2*nstep;i++)
{

// Displacement control?
if (!Displ_control)
{
// Increment pressure
Global_Physical_Variables::external_pressure() -= pext_increment;

}
else
{
// Increment control displacement
Global_Physical_Variables::Xprescr+=displ_increment;

}

// Solve
newton_solve();

// Doc solution
doc_info.number()++;
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doc_solution(doc_info,trace_file);

}

} // end of run

Done!

1.10 Further comments and Exercises

1.10.1 "Internal" and "external" Data in elements and "global" Data in Problems

In the section The constructor we encountered two different constructors for the DisplacementControl←↩

Element.

• The first version (in which the Data object that contains the unknown load value is created by the constructor)
is most natural for the problem considered here as the load Data is created specifically for the purpose of
allowing displacement control to be applied. It therefore natural to regard the DisplacementControl←↩

Element as being "in charge of" the load Data , and storing it in the element's "internal Data". ( Recall
that once Data is stored in an element's internal Data, the element becomes responsible for performing
tasks such as equation numbering, timestepping, etc. that must be performed exactly once for each Data
value in the Problem.)

• The second version of the constructor is appropriate for problems in which the load Data has already been
created by another element, implying that the other element is already "in charge" of the Data object and
performs the equation numbering, timestepping etc. for its values. In that case, the load Data is regarded
as "external Data" for the DisplacementControlElement.

In our example code, we simulated the second scenario by creating the load Data object before calling the second
version of the constructor. While this ensures that the load can be regarded as an unknown in the problem, the
Problem remains "unaware" of the additional unknown, as none of the elements in the Problem's mesh is "in
charge" of it. While this is clearly a somewhat artificial scenario, oomph-lib provides a mechanism for handling
such cases: Adding a Data object to the Problem's "global Data" by calling
Problem::add_global_data(...)

puts the Problem itself "in charge" of this Data.

1.10.2 Exercises

1. Run the code without displacement control (e.g. by setting the boolean flag displ_control in the
main function to false) and confirm that a non-zero perturbation pressure, pcos ̸= 0 is required to
induce the ring's non-axisymmetric collapse This shows that the numerical model is not as sensitive to
non-axisymmetric perturbations as the theory suggests – roundoff error alone is not sufficient to initiate
non-axisymmetric buckling. Use this version of the code to compute the load-displacement characteristics
of the ring in its axisymmetric state, i.e. the dash-dotted blue line in the bifurcation diagram shown at the
beginning of this document.

2. Run the code without displacement control and explain why during the second phase of the parameter study
(when pcos = 0 ), the Newton method converges very slowly and provides very inaccurate results when
pext = 3 .

3. We claimed that the load/displacement curves for the post-buckling regime emanate from the axisymmetric
branch at pext = 3 , yet closer inspection of the bifurcation diagram shows a small kink in the post-buckling
curves near the bifurcation. Explain what causes this kink and why it is practically impossible to avoid its oc-
currence. [Hint: The load/displacement curves contain individual data points, each one of which corresponds
to a solution of the governing equations. The solutions were obtained by Newton's method which tends to
converge to a solution in which the unknowns are "close" to their values at the beginning of the iteration. Is
it obvious that an initial guess that corresponds to a non-axisymmetric configuration is necessarily "closer" to
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another non-axisymmetric solution than to a nearby axisymmetric solution?]

4. The computation shown above was performed with the default non-dimensional wall thickness of
h∗/R0 = 1/20 . Repeat the computation with smaller wall-thicknesses (the previous example

shows how to change the default value) and confirm the theoretical predictions for the dependence of p[buckl]ext

and p
[owc]
ext on h∗/R0.

5. Comment out the command that stores the load Data as global Data and explain why the code fails with a
segmentation fault. Use the Problem::self_test() function to identify the problem. [Hint: What is the
default value for a Data object's global equation numbers? What happens if this default is not overwritten?
Why is the default assignment not overwritten?]

1.11 Source files for this tutorial

• The source files for this tutorial are located in the directory:

demo_drivers/beam/steady_ring/

• The driver code is:

demo_drivers/beam/steady_ring/steady_ring.cc

1.12 PDF file

A pdf version of this document is available.
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