Chapter 1

Demo problem: Solution of a "free-boundary"
Poisson problem - a simple model for
"fluid"-structure interaction.

In this example we shall consider our first (toy!) interaction problem. The problem combines two single-physics
problems, studied in earlier examples, and combines them into a coupled free-boundary problem.

*In one of our first examples we demonstrated the solution of Poisson's equation in a fish-
shaped domain, D;,p,, in which the curvilinear upper and lower boundaries of the fish's body were given
by circular arcs which we represented by GeomObjects. Given the position of the two circular arcs,
whose centres are located at (X, 2Y.), the single-physics Poisson code computes the solution of Poisson's
equation in the corresponding domain.

We have already demonstrated how comph-1ib's MacroElement /Domain represen-
tation of Dy, allows an update of the nodal positions in response to changes in the domain boundary by a
simple call to Mesh: :node_update (). The example code therefore allowed us to compute the solution
at a control node, wu.¢,;, as a function of the "height" of the domain, characterised by Y.

* In another example, we demonstrated how to solve a (trivial) solid mechanics problem: The vertical
displacement of a circular ring (represented by a GeomOb ject) that is mounted on an elastic foundation of
spring stiffness k. The example code allowed us to compute the displacement of the ring, characterised by
Y., as a function of the load f acting on it.

We will now consider the coupled problem obtained by using the solution of Poisson's equation at the control node,
Uctrl, as the "load", f, that acts on the two circular arcs that define the curvilinear boundaries of D¢;s,. The
resulting coupled problem is sketched in the figure below. While this problem is obviously somewhat artificial, it has
many of the key features that arise in genuine fluid-structure interaction problems. In particular, the displacement of
the domain boundary is driven by the solution of the "bulk" (Poisson) equations, just as the deformation of an elastic
structure in an FSI problem is driven by the fluid pressure and shear stresses, i.e. quantities that are derived from
the solution of the Navier-Stokes equations in the "bulk" domain.

Generated by Doxygen

../../../poisson/fish_poisson/html/index.html
../../../poisson/fish_poisson2/html/index.html#com
../../../interaction/circle_as_element/html/index.html

Demo problem: Solution of a "free-boundary” Poisson problem — a simple model for "fluid"-structure

2 interaction.
circular are; E circular are:
centre i, 1) ﬁf{mnnx_..};. i
e f
circular are; %L are:
cenlre alix_ -1 = cenle alix,. -5)
5 . .
Viu=1 1in J”ft'sh kY. = ||r
— Given: Ye — Given: f
— Compute: g — Compute: Y,
Couple by setting [= ngn

=T springs loaded by
== solution at
control node

-
control npde

=

Figure 1.1 Sketch of the two individual single-physics problems (top) and the coupled problem (bottom).

The two single-physics problems involve two uncoupled sets of equations and unknowns:

» The residual vector of the Poisson elements in the single-physics Poisson problem depends on the nodal
values in the "bulk" mesh. These nodal values are the only unknowns in the problem since the position of
the domain boundary, and hence the position of the nodes are fixed. An update of the nodal positions in
response to any changes in the domain boundary is a mere pre-processing step, to be performed just once,
before computing the solution.

» The residual vector of the ElasticallySupportedRingElement depends on the position of ring's
centre, Y., which is the only unknown in the problem as the load on the ring is fixed.

The coupling between the two single-physics problem introduces additional dependencies:

» The residuals of the Poisson elements also depend on the nodal positions which in turn depend (via the
MacroElement /Domain - based node-update function) on the the position of the domain boundary. The
boundary position is controlled by the ElasticallySupportedRingElement's geometric Data,
which stores the value of Y.

» The residual vector of the ElasticallySupportedRingElement also depends on the load, which is
now given by the unknown nodal value at a control node in the "bulk" mesh.

We note that most of the methodology required to solve this coupled problem is already available:

* The MacroElement /Domain representation of the Mesh makes it possible to update the nodal positions
in the bulk mesh in response to changes in the shape/position of the curvilinear domain boundary.

Generated by Doxygen

1.1 Results 3

« Multiple inheritance allows the ElasticallySupportedRingElement to act as a GeomObject
(a role in which it can be used to parametrise the unknown curvilinear domain boundary) and as a
GeneralisedElement (a role in which its unknown geometric Data value, Y., can be determined as
part of the overall solution).

» The load f onthe ElasticallySupportedRingElement is stored in the element's external Data,
and derivatives of the element's residual vector with respect to f are automatically taken into account when
the element's Jacobian matrix is computed.

The only interaction that still has to be incorporated into the problem formulation is the dependence of the Poisson
element's residual vectors on the geometric Data in the ElasticallySupportedRingElement. This in-
teraction arises through the MacroElement /Domain - based node-update function which translates changes
in the GeomOb ject 's geometric Data into changes in the nodal positions. Such dependencies may be added
to any existing element by "wrapping” the element into the templated wrapper class MacroElementNode+«

UpdateElement which has the following inheritance structure:
template<class ELEMENT>
class MacroElementNodeUpdateElement : public virtual ELEMENT,
public virtual MacroElementNodeUpdateElementBase

An element of type MacroElementNodeUpdateElement <ELEMENT> is an element of type ELEMENT, and
inherits the additional functionality provided by the MacroElementNodeUpdateElementBase base class.
The most important additional functionality provided by this class is the ability to add the values stored in the geo-
metric Data of associated GeomOb ject s to the element's list of unknowns. Once added, the derivatives of the
element's residual vector with respect to these additional unknowns are automatically included into the element's Ja-
cobian matrix. This is achieved by overloading the ELEMENT : : get__jacobian (...) function and evaluating
the additional derivatives by finite differencing. See Comments for details on the implementation.

The solution of the coupled problem therefore only requires a few trivial changes to the single-physics (Poisson)
code:

1. The element type used for the solution of the "bulk" equations must be changed to its "wrapped" counterpart,
as discussed above. For instance, if the single-physics code used a nine-node refineable Poisson element of
type RefineableQPoissonElement <2, 3>, the coupled problem must be discretised by elements of
type MacroElementNodeUpdateElement<RefineableQPoissonElement<2, 3> > (Yes,it's
a bit of a mouthful...).

2. The "bulk" mesh must be "upgraded" (again via multiple inheritance) to a Mesh that is derived from the
MacroElementNodeUpdateMesh base class.

3. A vector of pointers to those GeomOb ject s that are involved in an element's MacroElement /Domain
- based node update operation must be passed to the elements. (This is done most easily in the constructor
of the "upgraded" mesh.) The geometric Data contained in these GeomOb jects is then automatically
included in the elements' list of unknowns.

4. The Mesh's node_update () function must be executed whenever the Newton method has changed the
values of the unknowns: This is because changing a value that is stored in a GeomOb ject 's geomet-
ric Data does not automatically update the positions of any dependent nodes. This is done most eas-
ily be including the node_update () function into the Problem: :actions_before_newton_«
convergence_check () function; we refer to another document for a more detailed discussion
of the order in which the various "action" functions are called by oomph-1ib's Newton solver.

1.1 Results

The animation below shows the results of a spatially-adaptive solution of Poisson's equations in the fish-shaped
domain, for a variety of domain "heights". This animation was produced withthe single-physics Poisson
solver discussed in an earlier example.

Generated by Doxygen

../../../order_of_action_functions/html/index.html
../../../poisson/fish_poisson/html/index.html
../../../poisson/fish_poisson/html/index.html

Demo problem: Solution of a "free-boundary” Poisson problem — a simple model for "fluid"-structure

interaction.

Figure 1.2 Spatially adaptive solution of Poisson's equation in a fish-shaped domain for various “widths' of

the domain.

An increase in the height of the domain increases the amplitude of the solution. This is reflected by the red line in
the figure below which shows a plot of u..; as a function of Y,.. The green marker shows the solution of the coupled
problem for a spring stiffness of k¥ = 1. For this value of the spring stiffness, the solution of the coupled problem
should be (and indeed is) located at the intersection of the curve u,;(Y.) with the diagonal, u.; = Yz, shown by

the dashed blue line.

=

coriral

coriral

ooial

0.3

Figure 1.3 Solution of Poisson's equation at a control node as a function of the "height' of the domain.

Generated by Doxygen

1.2 Implementation in oomph-lib 5

1.2 Implementation in oomph-lib

The sections below provide the usual annotated listing of the driver code. We stress that only a few trivial changes
are required to incorporate the presence of the free boundary into the existing single-physics code:

* The Mesh : Upgrading the RefineableFishMesh via multiple inheritance.

» The driver code : Changing the element type for the solution of the Poisson equation.

» The Problem constructor : Storing the element that represents the free boundary in a (sub-)mesh.

» The problem class : Implementing the function Problem: :actions_before_newton_convergence«
_check () to update the nodal positions after each Newton step.

1.3 Global parameters and functions

The namespace ConstSourceForPoisson defines the constant source function, exactly as in the
corresponding single-physics code.

| /=============start_of_namespac
/// Namespace for const source term in Poisson equation
!/

namespace ConstSourceForPoisson

{

/// Const source function
void get_source (const Vector<double>& x, double& source)

{
source = -1.0;

}

} // end of namespace

1.4 The Mesh

Meshes that are to be used with MacroElementNodeUpdateElements should be derived (typically by mul-
tiple inheritance) from the

MacroElementNodeUpdateMesh class. This class overloads the generic Mesh: :node_update () func-
tion and ensures that the node update is performed by calling the node_update () function of the Mesh' s con-
stituent nodes, rather than simply updating their positions, usingthe FiniteElement : :get_x (.. .) function.
The overloaded version is not only more efficient but also ensures that any auxiliary node update functions (e.g.
functions that update the no-slip condition on a moving fluid node on a solid boundary) are performed too.

In our driver code we add the additional functionality provided by the MacroElementNodeUpdateMesh class
tothe RefineableFishMeshclassusedinthe single-physics Poisson problem considered

//==========start_of_mesh
/// Refineable, fish-shaped mesh with MacroElement-based node update.
//
template<class ELEMENT>

class MyMacroElementNodeUpdateRefineableFishMesh :
public virtual RefineableFishMesh<ELEMENT>,
public virtual MacroElementNodeUpdateMesh

{

The constructor calls the constructors of the underlying RefineableFishMesh. [Note the explicit call to the
FishMesh constructor prior to calling the constructor of the RefineableFishMesh. Without this call, only the
default (argument-free) constructor of the FishMesh would be called! Consult your favourite C++ book to check
on constructors for derived classes if you don't understand this. We recommend Daogi Yang's brilliant book

C++ and Object-Oriented Numeric Computing for Scientists and Engineers.)
public:

/// Constructor: Pass pointer to GeomObject that defines

/// the fish’s back and pointer to timestepper

/// (defaults to (Steady) default timestepper defined in the Mesh

/// base class).

MyMacroElementNodeUpdateRefineableFishMesh (GeomObject* back_pt,

TimeStepperx time_stepper_pt=&Mesh::Default_TimeStepper

FishMesh<ELEMENT> (back_pt,time_stepper_pt),

RefineableFishMesh<ELEMENT> (time_stepper_pt)

Generated by Doxygen

../../../poisson/fish_poisson/html/index.html#global
../../../poisson/fish_poisson/html/index.html#global
../../../poisson/fish_poisson/html/index.html
../../../poisson/fish_poisson/html/index.html
http://www.math.wayne.edu/~yang/
http://www.springeronline.com/sgw/cda/frontpage/0,11855,4-40007-22-2105335-0,00.html?changeHeader=true
http://www.springeronline.com/sgw/cda/frontpage/0,11855,4-40007-22-2105335-0,00.html?changeHeader=true

Demo problem: Solution of a "free-boundary” Poisson problem — a simple model for "fluid"-structure
6 interaction.

{
To activate the MacroElementNodeUpdateElement 's ability to automatically compute the derivatives of the
residual vectors with respect to the geometric Dat a that determines its nodal positions, we must pass the pointers
to the GeomOb ject s that are involved in the element's MacroElement - based node-update to the elements.
In general, an element's node-update will be affected by multiple GeomOb ject s therefore the set_node_+«
update_info (...) function expects a vector of pointers to GeomObjects. In the present example, only a
single GeomOb ject (the GeomOb ject that represents the fish's curved "back") determines the nodal position of
all elements:

// Set up all the information that’s required for MacroElement-based
// node update: Tell the elements that their geometry depends on the
// fishback geometric object.
unsigned n_element = this->nelement ();
(unsigned i=0;i<n_element; i++)

{

// Upcast from FiniteElement to the present element

ELEMENT #*el_pt = dynamic_cast<ELEMENT=x> (this->element_pt (i));

// There’s just one GeomObject

Vector<GeomObject*> geom_object_pt (1);

geom_object_pt[0] = back_pt;

// Tell the element which geom objects its macro-element-based
// node update depends on

el_pt->set_node_update_info (geom_object_pt);

}

} //end of constructor
The destructor can remain empty but we provide a final overload for the Mesh's node_update () function to
avoid any ambiguities as to which one is to be used.

/// Destructor: empty
virtual ~MyMacroElementNodeUpdateRefineableFishMesh () {}

/// Resolve mesh update: Node update current nodal
/// positions via sparse MacroElement-based update.
//void node_update ()

/A

// MacroElementNodeUpdateMesh: :node_update () ;
//)

1i end of mesh class

1.5 The driver code

The driver code is very simple: We build the problem with the "wrapped” version of the refineable quadrilateral
nine-node Poisson element. Since the initial mesh is very coarse we perform two uniform mesh refinements before
solving the problem with automatic spatial adaptivity, allowing for up to two further mesh adaptations.

// start_of_main
/// Driver for "free-boundary" fish poisson solver with adaptation.
//
int main()
{
// Shorthand for element type
typedef MacroElementNodeUpdateElement<RefineableQPoissonElement<2,3> >
ELEMENT;
// Build problem
FreeBoundaryPoissonProblem<ELEMENT> problem;
// Do some uniform mesh refinement first
problem.refine_uniformly();
problem.refine_uniformly () ;

// Solve/doc fully coupled problem, allowing for up to two spatial
// adaptations.

unsigned max_solve=2;

problem.newton_solve (max_solve) ;

problem.doc_solution();

} // end of main

1.6 The problem class

Apart from a few trivial additions, the problem class is virtually identical to that used in the single-physics
Poisson problem. The mostimportant addition to the single-physics problem class is the function Problem«
::actions_before_newton_convergence_check () which updates the nodal positions in the "bulk"
Poisson mesh following an update of the geometric Dat a that controls the position of the curvilinear domain bound-
ary; we referto another document for a more detailed discussion of the order in which the various "action”
functions are called by comph—-1ib's Newton solver.

//==========start_of_problem_class
/// Refineable "free-boundary" Poisson problem in deformable

Generated by Doxygen

../../../poisson/fish_poisson/html/index.html
../../../poisson/fish_poisson/html/index.html
../../../order_of_action_functions/html/index.html

1.7 The Problem constructor 7

/// fish-shaped domain. Template parameter identifies the element.
!/
template<class ELEMENT>

class FreeBoundaryPoissonProblem : public Problem
{

public:

/// Constructor
FreeBoundaryPoissonProblem() ;

/// Destructor (empty)
virtual ~FreeBoundaryPoissonProblem() {};

/// Update the problem specs before solve (empty)
void actions_before_newton_solve() {}

/// Update the problem specs after solve (empty)
void actions_after_newton_solve () {}

/// Access function for the fish mesh
MyMacroElementNodeUpdateRefineableFishMesh<ELEMENT>* fish_mesh_pt ()
{
return Fish_mesh_pt;
}

/// Doc the solution
void doc_solution();

/// Before checking the new residuals in Newton’s method
/// we have to update nodal positions in response to possible
/// changes in the position of the domain boundary
void actions_before_newton_convergence_check ()
{
fish_mesh_pt () ->node_update () ;
}

private:

/// Pointer to fish mesh
MyMacroElementNodeUpdateRefineableFishMesh<ELEMENT>x Fish_mesh_pt;

/// Pointer to single-element mesh that stores the GeneralisedElement
/// that represents the fish’s back

Mesh* Fish_back_mesh_pt;

}; // end of problem class

1.7 The Problem constructor

We start by creating the GeomOb ject /GeneralisedElement that will represent the unknown curvilinear
domain boundary and pass it (in its role as a GeomOb ject) to the constructor of the bulk mesh. We then add the
pointer to the bulk mesh to the Problem' s collection of submeshes and create an error estimator for the adaptive
solution of the Poisson equation.

===gstart_of_constructor
/// Constructor for adaptive free-boundary Poisson problem in
/// deformable fish-shaped domain.
//
template<class ELEMENT>
FreeBoundaryPoissonProblem<ELEMENT>: :FreeBoundaryPoissonProblem ()
{
// Set coordinates and radius for the circle that will become the fish back
double x_c=0.5;
double y_c=0.0;
double r_back=1.0;
// Build geometric object that will become the fish back
ElasticallySupportedRingElement* fish_back_pt=
new ElasticallySupportedRingElement (x_c,y_c,r_back);
// Build fish mesh with geometric object that specifies the fish back
Fish_mesh_pt=new
MyMacroElementNodeUpdateRefineableFishMesh<ELEMENT> (fish_back_pt);
// Add the fish mesh to the problem’s collection of submeshes:
add_sub_mesh (Fish_mesh_pt) ;
// Create/set error estimator for the fish mesh
fish_mesh_pt () ->spatial_error_estimator_pt ()=new Z2ErrorEstimator;

Next we store the pointer to the ElasticallySupportedRingElement in its own Mesh and add it to the

Problem's collection of submeshes before building the Problem's global Mesh from its two submeshes:
// Build mesh that will store only the geometric wall element

Fish_back_mesh_pt=new Mesh;

// So far, the mesh is completely empty. Let’s add the

// GeneralisedElement that represents the shape

// of the fish’s back to it:

Fish_back_mesh_pt->add_element_pt (fish_back_pt);

// Add the fish back mesh to the problem’s collection of submeshes:

add_sub_mesh (Fish_back_mesh_pt);

Generated by Doxygen

Demo problem: Solution of a "free-boundary” Poisson problem — a simple model for "fluid"-structure
8 interaction.

// Now build global mesh from the submeshes
build_global_mesh();

We choose the central node in the Poisson mesh as the control node and use it (in its role as Data) as the "load"
forthe ElasticallySupportedRingElement.

// Choose a control node: We’ll use the
// central node that is shared by all four elements in
// the base mesh because it exists at all refinement levels.

// How many nodes does element 0 have?

unsigned nnod=fish_mesh_pt () ->finite_element_pt (0) ->nnode () ;

// The central node is the last node in element O0:

Nodex control_node_pt=fish_mesh_pt () ->finite_element_pt (0) ->node_pt (nnod-1);

// Use the solution (value 0) at the control node as the load
// that acts on the ring. [Note: Node == Data by inheritance]
dynamic_cast<ElasticallySupportedRingElement«*> (Fish_mesh_pt->fish_back_pt())->
set_load_pt (control_node_pt);
Finally, we pin the nodal values on all boundaries, apply the homogeneous Dirichlet boundary conditions, pass the

pointer to the source function to the elements, and set up the equation numbering scheme.

// Set the boundary conditions for this problem: All nodes are

// free by default -- just pin the ones that have Dirichlet conditions
// here. Set homogeneous boundary conditions everywhere
unsigned num_bound = fish_mesh_pt () ->nboundary () ;

for (unsigned ibound=0; ibound<num_bound; ibound++)
{
unsigned num_nod= fish_mesh_pt () ->nboundary_node (ibound) ;
(unsigned inod=0; inod<num_nod; inod++)
{
fish_mesh_pt () —>boundary_node_pt (ibound, inod) ->pin (0) ;
fish_mesh_pt () —>boundary_node_pt (ibound, inod) ->set_value (0,0.0);
}
}

/// Loop over elements and set pointers to source function
unsigned n_element = fish_mesh_pt () ->nelement () ;
r(unsigned i=0;i<n_element; i++)
{
// Upcast from FiniteElement to the present element
ELEMENT *el_pt = dynamic_cast<ELEMENTx> (fish_mesh_pt () ->element_pt (i));

//Set the source function pointer

el _pt->source_fct_pt () = &ConstSourceForPoisson::get_source;

}
// Do equation numbering
cout « "Number of equations: " « assign_eqn_numbers () « std::endl;
} // end of constructor

1.8 Post-processing

The post-processing routine writes the computed result to an output file.
====gstart_of_doc
/// Doc the solution in tecplot format.
//
template<class ELEMENT>
void FreeBoundaryPoissonProblem<ELEMENT>::doc_solution ()
{
// Number of plot points in each coordinate direction.
unsigned npts=5;
// Output solution
ofstream some_file ("RESLT/soln0.dat");
fish_mesh_pt () —>output (some_file, npts);
some_file.close();
} // end of doc

1.9 Comments

A more detailed description of the theory and the implementation can be found in the paper

+ Heil, M. & Hazel, A. L. "oomph-1ib — An Object-Oriented Multi-Physics Finite-Element Library". In: Fluid-
Structure Interaction, Editors: M. Schafer and H.-J. Bungartz. Springer (Lecture Notes on Computational
Science and Engineering 53, 2006), (32 pages) (abstract) (pdf preprint).

and in this talk:

» Heil, M. & Hazel, A. L. "An object-oriented approach to the evaluation of the ‘shape derivatives’ in mono-
lithic fluid-structure interaction solvers". 7th World Congress on Computational Mechanics, LA, July 2006.
(pdf).

Generated by Doxygen

http://www.maths.man.ac.uk/~mheil/MATTHIAS/ABSTRACTS/HeilHazelOomph2006.html
http://www.maths.man.ac.uk/~mheil/MATTHIAS/PDF/oomph_for_www.pdf
http://www.maths.man.ac.uk/~mheil/oomph_lib_additional_material/LA_talk_2006/LA_talk.pdf
http://www.maths.man.ac.uk/~mheil/oomph_lib_additional_material/LA_talk_2006/LA_talk.pdf

1.9 Comments 9

The following subsections provide a brief description of the main features.

1.9.1 Sparse node updates

The key feature of our implementation which allows the efficient computation of the "shape derivatives" is the
ability of MacroElementNodeUpdateNodes (discussed in more detail below) to "update their own position"
in response to changes in shape/position of the domain boundary. This capability is demonstrated in the following
simple example code.

We start by building the Mesh as before

// start_of_main
/// Driver to document sparse MacroElement-based node update.
//

int main()
{

// Shorthand for element type

typedef MacroElementNodeUpdateElement<RefineableQPoissonElement<2,3> >

ELEMENT;

// Set coordinates and radius for the circle that will become the fish back
double x_c=0.5;

double y_c=-0.2;

double r_back=1.0;

// Build geometric object that will become the fish back

ElasticallySupportedRingElement* Fish_back_pt=

new ElasticallySupportedRingElement (x_c,y_c,r_back);

// Build fish mesh with geometric object that specifies the fish back
MacroElementNodeUpdateRefineableFishMesh<ELEMENT>»* Fish_mesh_pt=new

MacroElementNodeUpdateRefineableFishMesh<ELEMENT> (Fish_back_pt);

and document the mesh (i.e. the shape of its constituent finite elements and the nodal positions):
// Number of plot points in each coordinate direction.
unsigned npts=11;

ofstream some_file;

char filename[100];

// Output initial mesh

unsigned count=0;

sprintf (filename, "RESLT/soln%i.dat", count);
some_file.open(filename) ;

Fish_mesh_pt->output (some_file,npts);
some_file.close();

count++;

Next, we "manually" increment Y,, i.e. the y-coordinate of the centre of the circular arc that defines the upper
curvilinear boundary of the fish mesh.

// Increment y_c
Fish_back_pt->y_c()+=0.2;

This step mimics the incrementation of one of the Problems ' s unknowns (recall that in the free-boundary problem
considered above, Y, has to be determined as part of the solution!) during the finite-difference based computation
of the shape derivatives.

For meshes that are not derived from the MacroElement NodeUpdateMeshBase class, the only way to update
the nodal positions in response to a change in the boundary position, is to call the Mesh: :node_update ()
function. This updates the position of all nodes in the mesh — a very costly operation.

Meshes that are derived from the MacroElementNodeUpdateMeshBase class contain MacroElement«+
NodeUpdateNodes which can update their own position, as shown here:

// Adjust each node in turn and doc
unsigned nnod=Fish_mesh_pt->nnode () ;
(unsigned 1=0;i<nnod; i++)
{
// Update individual nodal position
Fish_mesh_pt->node_pt (i) ->node_update () ;
// Doc mesh
sprintf (filename, "RESLT/soln%i.dat", count);
some_file.open(filename);
Fish_mesh_pt->output (some_£file,npts);
some_file.close();
count++;
}

} // end of main

We note that the Node: : node_update () function is defined as an empty virtual function in the Node base
class, indicating that "normal" Nodes cannot "update their own position". The function is overloaded in the
MacroElementNodeUpdateNode class, details of which are given below. Overloaded versions of this function
also exist in various other derived Node classes (such as as the AlgebraicNodes and the SpineNodes) for
which algebraic node update operations are defined.

Here is an animation that illustrates how the successive update of the individual nodal positions in response to the
change in the boundary position gradually updates the entire mesh.

Generated by Doxygen

Demo problem: Solution of a "free-boundary” Poisson problem — a simple model for "fluid"-structure
10 interaction.

Figure 1.4 lllustration of the sparse node-update procedure.

1.9.2 How it works
The implementation employs three key components:

* MacroElementNodeUpdateNodes are derived from the Node base class. Their main purpose is
to provide the MacroElementNodeUpdateNodes: :node_update () function which updates the
nodal position in response to changes in the domain boundary. This capability was demonstrated above
and is achieved by allowing the MacroElementNodeUpdateNodes to store a pointer to the Macro«
ElementNodeUpdateElement that determines its position (using its own MacroElement - based
representation) and its local coordinates in that element.

MacroElementNodeUpdateNodes also store a function pointer to an auxiliary node update func-
tion that allows additional tasks to be performed whenever a node update is performed. This is useful, e.g. in
unsteady fluid-structure interaction problems in which a change in the position of nodes that are located on a
no-slip boundary also requires an update of the fluid velocities at that node. By default, the function pointer
is initialised to NULL, indicating that no auxiliary node update functions have to be executed.

Finally, the MacroElementNodeUpdateNodes store pointers to the GeomObjects that affect their
node update. While this information is not required by the node update function itself, it must be available to
correctly set up the equation nhumbering scheme in the presence of hanging nodes. (Details are too messy
to explain here but it's true!).

* The MacroElementNodeUpdateElement <ELEMENT> class was already discussed in the main part
of this document. These elements "wrap around” the element specified by the template argument, ELEMENT,
overload some of its member functions and add some new ones.

Overloaded functions include:

— The FiniteElement: :construct_node (...) functions create an element's local Nodes.
This is overloaded by a version that creates MacroElementNodeUpdateNodes instead.

Generated by Doxygen

1.10 Source files for this tutorial 11

— The functions GeneralisedElement::get_Jjacobian(...) and Generalised«
Element::fill_in_contribution_to_jacobian(...) are overloaded by versions
that add the shape derivatives to the Jacobian matrices computed by the underlying ELEMENT.

— Similarly, the function FiniteElement::assign_all_generic_local_eqn_numbers ()
is overloaded to add the unknowns associated with the node update functions into the element's equa-
tion numbering scheme.

Additional member functions are provided to specify (and access) the GeomOb ject s that affect an ele-
ment's MacroElement - based node update. Full details may be foundinthe "bottom up" discussion
of oomph-1ib"'s data structure.

 Finally, the MacroElementNodeUpdateMeshBase class overloads the Mesh: :node_update ()
function to ensure that node updates are performed node-by-node, using the MacroElementNode«
UpdateNode: :node_update () function. This ensures that the node update not only updates the nodal
positions but also executes any auxiliary update functions.

1.9.3 The method also works for non-"toy" problems!

The above example demonstrated how easy it is to "upgrade" a driver code for the solution of a single-physics
problem to a fluid-structure-interaction-like free-boundary problem. It is important to stress that the methodology
employed in our "toy" free-boundary problem can also be used for genuine fluid-structure interaction prob-
lems. For instance, the driver code for the simulation of 2D unsteady finite-Reynolds number
flow in a channel with an oscillating wall whose motion is prescribed can eas-
ily be extended to a driver code for the corresponding fluid-structure interaction problem
in which the wall is replaced by a flexible membrane that is loaded by the
fluid traction.

1.10 Source files for this tutorial

» The source files for this tutorial are located in the directory:

demo_drivers/interaction/free_boundary_poisson/

« The driver code is:

demo_drivers/interaction/free_boundary_poisson/macro_element_free_<«
boundary_poisson.cc

1.11 PDF file

A pdf version of this document is available.

Generated by Doxygen

../../../the_data_structure/html/index.html
../../../navier_stokes/collapsible_channel/html/index.html
../../../navier_stokes/collapsible_channel/html/index.html
../../../interaction/fsi_collapsible_channel/html/index.html
../../../interaction/fsi_collapsible_channel/html/index.html
../../../interaction/fsi_collapsible_channel/html/index.html
../../../../demo_drivers/interaction/free_boundary_poisson/macro_element_free_boundary_poisson.cc
../../../../demo_drivers/interaction/free_boundary_poisson/macro_element_free_boundary_poisson.cc

	1 Demo problem: Solution of a `¨free-boundary`¨ Poisson problem – a simple model for `¨fluid`¨-structure interaction.
	1.1 Results
	1.2 Implementation in oomph-lib
	1.3 Global parameters and functions
	1.4 The Mesh
	1.5 The driver code
	1.6 The problem class
	1.7 The Problem constructor
	1.8 Post-processing
	1.9 Comments
	1.9.1 Sparse node updates
	1.9.2 How it works
	1.9.3 The method also works for non-`¨toy`¨ problems!

	1.10 Source files for this tutorial
	1.11 PDF file

