
Chapter 1

Mesh generation based on Tetgen

In this document we demonstrate how to generate unstructured tetrahedral meshes for oomph-lib, based on
the output from Hang Si's open-source mesh generator Tetgen . The mesh generation is performed in
a two-stage process. First we use Tetgen to generate the mesh "offline". Then we process the output files
generated by
Tetgen to generate an oomph-lib mesh.

1.1 Quick guide for the use of Tetgen

The Tetgen home page contains a comprehensive User's Guide for the code and its many options, therefore
we only present a brief overview of the code's most basic usage.
Tetgen creates the mesh based on the information about the mesh boundaries provided in an input

file, filename.poly, say. By default, three output files, filename.1.node, filename.1.ele, and
filename.1.face are created. They contain the information about the nodal positions, the element connectivity
lists and the boundary faces respectively.

1.1.1 The input file format

The input file for Tetgen usually has the extension ∗.poly and has the following format:

Node list
First line: [number of nodes] [dimension (must be 3)] [number of attributes] [number of boundary markers (0 or 1)]
Remaining lines: [node index] [x] [y] [z] [[attributes]] [[boundary marker]]
Facet list
One line: [number of facets] [boundary markers (0 or 1)]
Following lines are a list of the facets: [facet index]
where each facet has the following format:
One line: [number of polygons] [[number of holes]] [[boundary marker]]
Following lines: [number of corners] [corner 1] [corner 2] ... [last corner]
Following lines: [hole index] [x] [y] [z]
Hole list
One line: [number of holes]
Following lines: [hole index] [x] [y] [z]
Region attributes list
One line: [number of region]
Following lines: [region index] [x] [y] [z] [region number] [region attribute]

Comments:

• The data between [ ] must be provided. The attributes and boundary markers must only be specified if the
corresponding number of boundary markers or the number of attributes is nonzero.

Generated by Doxygen

http://www.wias-berlin.de/~si 
http://wias-berlin.de/software/tetgen//
http://wias-berlin.de/software/tetgen//
http://wias-berlin.de/software/tetgen//
http://wias-berlin.de/software/tetgen//
http://wias-berlin.de/software/tetgen//
http://wias-berlin.de/software/tetgen//


2 Mesh generation based on Tetgen

• Boundary markers can be used to identify which nodes are located on which domain boundaries. If domain
boundaries are to be identified the number of boundary markers should be set to 1, otherwise it must be set
to zero. If the number of boundary markers is set to 1, boundary markers must be specified for every node
and facet. A boundary marker 0 should be used for nodes that are not located on domain boundaries; a
boundary marker b+1 should be used to indicate that a node is located on the mesh boundary b in the final
oomph-lib mesh.

• oomph-lib does not use the "attributes" so their number should be set to zero.

• The boundary markers have to be specified in the node list AND in the facet list.

• If a node is located on multiple boundaries, the boundary marker of the node is chosen arbitrarily.

• Holes are identified by the coordinates of a single point in their interior. The holes in the facet list are holes in
the facet, they are different from the holes in the hole list, which are holes in the volume.

See the Tetgen home page for further information.

1.1.2 How to run Tetgen

To create the mesh from a given input file the command is
./tetgen filename.poly

With these commands, Tetgen will generate as few tetrahedra as possible. Finer meshes may be generated
by imposing additional constraints via command line arguments. For instance

• A maximum tetrahedron volume can be specified with -an where n is the maximal volume wanted. (There is
no space between -a and the number specifying the volume!)

• ...

Again, we refer to the
Tetgen home page for a comprehensive listing of all available options.

1.1.3 How to visualise a mesh generated by Tetgen

To visualise the mesh, the program tetview (distributed with Tetgen ) can be used.

1.2 An example: A cube with a cube hole

To illustrate the procedure, we demonstrate how to generate a mesh for the cube domain with a hole shown in the
figure below. Note that the node numbers correspond to those in the Tetgen input file. Boundary 1 is shown in
blue; boundary 2 in magenta. In the corresponding oomph-lib mesh, the boundaries are numbered from zero.

Generated by Doxygen

http://wias-berlin.de/software/tetgen//
http://wias-berlin.de/software/tetgen//
http://wias-berlin.de/software/tetgen//
http://wias-berlin.de/software/tetgen//
http://wias-berlin.de/software/tetgen//


1.2 An example: A cube with a cube hole 3

Figure 1.1 the cube with a hole domain

Here is a listing of the corresponding input file, cube_hole.poly:
# This file represents a cube with a cube hole in the middle.
# Part 1 - node list
16 3 0 1
1 0 0 0 1
2 3 0 0 1
3 3 3 0 1
4 0 3 0 1
5 0 0 3 1
6 3 0 3 1
7 3 3 3 1
8 0 3 3 1
9 1 1 1 2
10 2 1 1 2
11 2 2 1 2
12 1 2 1 2
13 1 1 2 2
14 2 1 2 2
15 2 2 2 2
16 1 2 2 2
# Part 2 - facet list
12 1
# bottom 1
1 0 1
4 1 2 3 4
# top 1
1 0 1
4 5 6 7 8
# left 1
1 0 1
4 1 4 8 5
# right 1
1 0 1
4 2 3 7 6
# front 1
1 0 1
4 3 4 8 7
# back 1
1 0 1
4 1 2 6 5
# bottom 2
1 0 2
4 9 10 11 12
# top 2
1 0 2
4 13 14 15 16
# left 2
1 0 2
4 9 12 16 13
# right 2
1 0 2

Generated by Doxygen



4 Mesh generation based on Tetgen

4 10 11 15 14
# front 2
1 0 2
4 11 12 16 15
# back 2
1 0 2
4 9 10 14 13
# Part 3 - hole list
1
1 1.5 1.5 1.5
# Part 4 - region list
0

The output files that Tetgen creates with the command
./tetgen -a0.2 cube_hole.poly

are cube_hole.1.node , cube_hole.1.ele and cube_hole.1.face.
Here is a sketch of the resulting discretisation, as displayed by tetview :

Figure 1.2 Cut plane of the tetrahedral mesh.

1.3 Creating an oomph-lib mesh based on output files generated by
Tetgen

oomph-lib provides a mesh, TetgenMesh, that uses the output from Tetgen to generate an unstructured
oomph-libMesh containing elements from the TElement<3,NNODE_1D> family of the tetrahedral elements.
The relevant interface is:

//=========start of TetgenMesh class======================================
/// Unstructured tet mesh based on output from Tetgen:
/// http://wias-berlin.de/software/tetgen/
//========================================================================
template<class ELEMENT>
class TetgenMesh : public virtual TetMeshBase
{
public:
/// Empty constructor

Generated by Doxygen

http://wias-berlin.de/software/tetgen//
../../../../demo_drivers/meshing/mesh_from_tetgen/cube_hole.1.node
../../../../demo_drivers/meshing/mesh_from_tetgen/cube_hole.1.ele
../../../../demo_drivers/meshing/mesh_from_tetgen/cube_hole.1.face
http://wias-berlin.de/software/tetgen//


1.3 Creating an oomph-lib mesh based on output files generated by Tetgen 5

TetgenMesh()
{

// Mesh can only be built with 3D Telements.
MeshChecker::assert_geometric_element<TElementGeometricBase, ELEMENT>(3);

}

/// Constructor with the input files
TetgenMesh(const std::string& node_file_name,

const std::string& element_file_name,
const std::string& face_file_name,
TimeStepper* time_stepper_pt = &Mesh::Default_TimeStepper,

1.3.1 Example 1: A Poisson problem

The driver code mesh_from_tetgen_poisson.cc demonstrates the use of this mesh for the solution of a
3D Poisson problem in the "cube domain with a hole", described in the previous section.
The code expects the names of ∗.node, ∗.ele and ∗.face files generated by Tetgen as command line
arguments and stores them in the namespace CommandLineArgs
int main(int argc, char* argv[])
{

// Store command line arguments
CommandLineArgs::setup(argc,argv);
// Check number of command line arguments: Need exactly three.
if (argc!=4)
{
std::string error_message =
"Wrong number of command line arguments.\n";
error_message +=
"Must specify the following file names \n";
error_message +=
"filename.node then filename.ele then filename.face\n";
throw OomphLibError(error_message,

OOMPH_CURRENT_FUNCTION,
OOMPH_EXCEPTION_LOCATION);

}

The names of these files are then passed to the mesh constructor. Since the rest of the driver code is
identical to that in the corresponding example with a structured mesh, we do not provide a
detailed listing but simply show the plot of the computed results, together with a plot of the exact solution, for linear
(four-noded) elements

Generated by Doxygen

../../../../demo_drivers/meshing/mesh_from_tetgen/mesh_from_tetgen_poisson.cc
http://wias-berlin.de/software/tetgen//
../../../../demo_drivers/meshing/mesh_from_tetgen/mesh_from_tetgen_poisson.cc
../../../../doc/poisson/eighth_sphere_poisson/html/index.html


6 Mesh generation based on Tetgen

Figure 1.3 FE and exact solution with linear elements.

Generated by Doxygen



1.3 Creating an oomph-lib mesh based on output files generated by Tetgen 7

...and quadratic (ten-noded) elements:

Generated by Doxygen



8 Mesh generation based on Tetgen

Figure 1.4 FE and exact solution with quadratic elements.

Generated by Doxygen



1.4 Comments and Exercises 9

1.3.2 Example 2: A Navier-Stokes problem

The driver code mesh_from_tetgen_navier_stokes.cc demonstrates the use of a TetgenMesh for
the solution of a 3D Navier-Stokes problem in the same geometry as in the previous example. We apply no-slip
boundary conditions on the central hole and impose a unit vertical velocity. On the outer boundaries we pin the y
and z velocity components and set them to zero, while leaving the axial velocity unspecified. The resulting flow field,
shown in the figure below, corresponds to the flow that is generated when the rigid block in the centre of the domain
rises vertically inside a rigid duct with "slippery walls". The duct is open at the ends x = const, where parallel,
axially-traction free outflow is imposed. The various slices show pressure contours and the in-plane velocity vectors.

Figure 1.5 Flow in a duct with slippery walls, driven by the vertical motion of the central block.

1.4 Comments and Exercises

1.4.1 Checking the boundary numbers

We re-iterate that Tetgen does not allow nodes to be located on multiple boundaries. It is therefore impor-
tant to check the boundary numbers allocated by Tetgen , e.g. by using the function Mesh::output_←↩

boundaries(...). Boundary nodes should always be placed on the boundary with the most restrictive bound-
ary conditions. If this is not possible, some post-processing of the mesh may be required.

1.4.2 Higher-order tets

Currently, TetgenMesh can only be used to generate four and ten-node tets (i.e. tets with tri-linear and tri-
quadratic shape functions). It should be easy to generalise the "scaffold-mesh"-based mesh generation procedure
to higher-order elements but this has not been done yet. Any volunteers?

1.4.3 Exercises

1. Download and install Tetgen, , and create your own meshes.

2. Experiment with the options that allow the specification of maximum element volumes etc.

Generated by Doxygen

../../../../demo_drivers/meshing/mesh_from_tetgen/mesh_from_tetgen_navier_stokes.cc
http://wias-berlin.de/software/tetgen//
http://wias-berlin.de/software/tetgen//
http://wias-berlin.de/software/tetgen//


10 Mesh generation based on Tetgen

1.5 Source files for this tutorial

• The source files for this tutorial are located in the directory:

demo_drivers/meshing/mesh_from_tetgen/

• The driver code is:

demo_drivers/meshing/mesh_from_tetgen/mesh_from_tetgen_poisson.cc

1.6 PDF file

A pdf version of this document is available.

Generated by Doxygen

../../../../demo_drivers/meshing/mesh_from_tetgen/mesh_from_tetgen_poisson.cc

	1 Mesh generation based on Tetgen
	1.1 Quick guide for the use of Tetgen
	1.1.1 The input file format
	1.1.2 How to run Tetgen
	1.1.3 How to visualise a mesh generated by Tetgen

	1.2 An example: A cube with a cube hole
	1.3 Creating an oomph-lib mesh based on output files generated by Tetgen
	1.3.1 Example 1: A Poisson problem
	1.3.2 Example 2: A Navier-Stokes problem

	1.4 Comments and Exercises
	1.4.1 Checking the boundary numbers
	1.4.2 Higher-order tets
	1.4.3 Exercises

	1.5 Source files for this tutorial
	1.6 PDF file


