
Chapter 1

oomph-lib's Block Preconditioning Framework

oomph-lib's block preconditioning framework provides an environment for the development of block precon-
ditioners for the iterative solution of linear systems by Krylov subspace methods. The framework is based on the
classification of the problem's unknowns (degrees of freedom; here abbreviated as dofs) into different "dof types"
which, in a multi-physics context, typically represent different physical quantities. A key feature of the framework is
that it allows existing block preconditioners (which were developed for a particular single-physics application, say)
to be re-used, in a hierarchical fashion, in block preconditioners for related multi-physics problems. This means that
existing Navier-Stokes and solid mechanics preconditioners can be used to create preconditioners for fluid-structure
interaction problems, say.

Following a brief overview of the underlying ideas and their implementation in oomph-lib this tutorial discusses a
sequence of increasingly complex block preconditioners that illustrate the framework's capabilities in the context of
a (rather artificial) model problem. The final example illustrates a simple implementation of a block preconditioner for
an FSI problem. We conclude with a few comments on the use of block preconditioners in parallel. Other tutorials
discuss how the methodology is used in "real" preconditioners. See, for instance, the tutorials discussing

• oomph-lib's "general purpose" block preconditioners.

• The NavierStokesSchurComplementPreconditioner for Navier-Stokes problems

• The FSIPreconditioner for monolithically-discretised fluid-structure
interaction problems.

• The preconditioner for large-displacement solid mechanics problems in
which boundary displacements are prescribed.

• The previous preconditioner is mainly used as a subsidiary block preconditioner for the solution
of fluid-structure interaction problems with (pseudo-)solid fluid mesh
updates.

Generated by Doxygen

../../distributed_general_purpose_block_preconditioners/html/index.html
../../../preconditioners/lsc_navier_stokes/html/index.html
../../../preconditioners/lsc_navier_stokes/html/index.html
../../../preconditioners/fsi/html/index.html
../../../preconditioners/fsi/html/index.html
../../../preconditioners/prescribed_displ_lagr_mult/html/index.html
../../../preconditioners/prescribed_displ_lagr_mult/html/index.html
../../../preconditioners/pseudo_solid_fsi/html/index.html
../../../preconditioners/pseudo_solid_fsi/html/index.html
../../../preconditioners/pseudo_solid_fsi/html/index.html

2 oomph-lib's Block Preconditioning Framework

1.1 Theoretical background

In oomph-lib, all problems are solved by Newton's method, which requires the repeated solution of linear systems
of the form

J δx = −r

for the Newton correction δx where J is the Jacobian matrix and r is the vector of residuals. (Left) preconditioning
represents a transformation of the original linear system to

P−1J δx = −P−1r,

introduced with the aim of accelerating the convergence of Krylov subspace solvers such as GMRES or CG. The
application of the preconditioner requires the solution of

Pz = y

for z at each Krylov iteration.

Block preconditioners are based (at least formally) on a reordering of the linear system such that related unknowns
(e.g. dofs representing the same physical quantity) are grouped together and enumerated consecutively.

For instance, in linear elasticity problems (discussed in another tutorial) where we compute the displace-
ment field of an elastic body in response to an applied traction, the (discrete) unknowns can be sub-divided ac-
cording to which component of the displacement vector they represent. Using this classification of the dofs, the
re-ordered linear system for a two-dimensional problem then has the form

[
Jxx Jxy

Jxy Jyy

] [
δxx

δxy

]
= −

[
rx
ry

]
.

A simple (and, in fact, quite effective) block preconditioner for this linear system can be formed by retaining only the
diagonal blocks of the system matrix, leading to the block diagonal preconditioner

Pdiag =

[
Jxx

Jyy

]
.

The application of this preconditioner requires the solution of the linear system

[
Jxx

Jyy

] [
zx
zy

]
=

[
yx

yy

]
,

which requires the (exact or approximate) solution of the two smaller linear systems Jxx zx = yx and Jyy zy = yy.

Generated by Doxygen

../../../linear_elasticity/periodic_load/html/index.html

1.2 Overview 3

1.2 Overview

The above example shows that the application of block preconditioners typically require several generic steps:

1. The classification of the dofs.

2. The application of subsidiary preconditioning operations such as the solution of (smaller) linear systems or
the evaluation of matrix-vector products with some of the blocks that are extracted from the original linear
system.

The following subsections describe how these tasks are performed within oomph-lib's block preconditioning
framework.

1.2.1 The classification of dof types via block preconditionable elements

The classification of dofs is specified by the elements since they are the only objects within oomph-lib's data
structure that "know" what role a specific dof plays in "their" equations. During the setup phase, the block precondi-
tioner loops over "all elements" (specified via one or more Meshes – here simply used as containers for elements;
see below for further details) to establish the "dof type" for each global unknown.

To achieve this, the class GeneralisedElement contains two broken virtual methods that must be re-
implemented/overloaded to label each of the element's dofs with its type. These methods are:

• GeneralisedElement::ndof_types() must return the number of dof types associated with an ele-
ment.

• GeneralisedElement::get_dof_numbers_for_unknowns(...) must return a list of pairs
comprising a map from global equation number to dof type for all unknowns in the element.

These are already implemented for many elements. If not, the functions are easy to write. For instance,
oomph-lib's DIM-dimensional linear elasticity elements from the QLinearElasticityElement family
can be made block-preconditionable by using the following wrapper class:
//==start_of_mylinearelasticityelement===============================
/// Wrapper to make quadratic linear elasticity element block
/// preconditionable
//===
template<unsigned DIM>
class MyLinearElasticityElement : public virtual QLinearElasticityElement<DIM,3>
{

public:

/// The number of "DOF types" that degrees of freedom in this element
/// are sub-divided into: The displacement components
unsigned ndof_types() const
{
return DIM;
}

/// Create a list of pairs for all unknowns in this element,
/// so the first entry in each pair contains the global equation
/// number of the unknown, while the second one contains the number
/// of the "DOF type" that this unknown is associated with.
/// (Function can obviously only be called if the equation numbering
/// scheme has been set up.)
///
/// The dof type enumeration (in 3D) is as follows:
/// S_x = 0
/// S_y = 1
/// S_z = 2
///
void get_dof_numbers_for_unknowns(
std::list<std::pair<unsigned long,unsigned> >& dof_lookup_list) const
{

Generated by Doxygen

4 oomph-lib's Block Preconditioning Framework

// number of nodes
unsigned n_node = this->nnode();

// temporary pair (used to store dof lookup prior to being added to list)
std::pair<unsigned,unsigned> dof_lookup;

// loop over the nodes
for (unsigned j=0;j<n_node;j++)
{
//loop over displacement components
for (unsigned i=0;i<DIM;i++)
{
// determine local eqn number
int local_eqn_number = this->nodal_local_eqn(j,i);

// ignore pinned values - far away degrees of freedom resulting
// from hanging nodes can be ignored since these are be dealt
// with by the element containing their master nodes
if (local_eqn_number >= 0)
{
// store dof lookup in temporary pair: Global equation number
// is the first entry in pair
dof_lookup.first = this->eqn_number(local_eqn_number);

// set dof numbers: Dof number is the second entry in pair
dof_lookup.second = i;

// add to list
dof_lookup_list.push_front(dof_lookup);
}

}
}

}
};

Thus, in the two-dimensional MyLinearElasticityElement<2> we have two types of dofs, corresponding
to the displacements in the x and y directions, respectively. They are enumerated as dof types 0 and 1, respectively.

1.2.2 dof types, blocks, compound blocks and meshes

In the block diagonal preconditioner for the two-dimensional linear elasticity problem, discussed above, we have dof
types that correspond directly to the blocks in the (re-ordered) Jacobian matrix. However, as we will demonstrate
below, it is also possible to combine the blocks associated with multiple dofs into a single (compound) block in

which case the number of blocks is smaller than the number of dof types. The relationship between dof types, block
types, the elemental dof type classification and meshes are as follows

• Elemental dof type classification: Each element classifies its own dof types in the function get_dof←↩

_numbers_for_unknowns(...). In the case of the two-dimensional MyLinearElasticity←↩

Element<2> elements, the dof types are classified as 0 and 1; for two-dimensional QTaylorHood←↩

Element<2> Navier-Stokes elements, the dof types are classified as 0 and 1 for the x and y-velocities,
and 2 for the pressure p; etc.

• Role of meshes: When classifying the degrees of freedom into dof types, the block preconditioning frame-
work visits all elements that make contributions to the Jacobian matrix and associates the global equation
number of each dof with the dof type specified by the element. The block preconditioning framework is given
access to the elements via (possibly multiple) meshes (here simply interpreted as containers for elements),
each of which is assumed to contain elements of a single type. The total number of dof types in the block
preconditioner is the sum of the dof types of the elements in the meshes. For instance, in a 2D fluid-structure
interaction problem we have two different element types, the solid elements (which contain the x and y solid
displacements, ux and uy, respectively, assumed to be enumerated as dof types 0 and 1 by these elements)
and the fluid elements (which contain the x- and y - fluid velocities, vx and vy , and the pressure, p, assumed
to be enumerated as dof types 0, 1 and 2 by these elements). Assuming the mesh of solid elements is
specified as mesh 0 and the mesh of fluid elements is mesh 1, the block preconditioner has a total of five dof
types which represent, in order, ux, uy, vx, vy, p. Note that if certain degrees of freedom are classified by
multiple elements, the most recent assignment of the dof type over-writes previous assignments. The order

Generated by Doxygen

1.3 Simple preconditioner examples 5

in which meshes are specified therefore matters.
A corollary to this is that a block preconditioner does not need to "know" about elements that do not introduce
any new unknowns. For instance, FaceElements that apply Neumann/flux boundary conditions operate
on dofs that are already contained in (and therefore classified by) the elements in the "bulk" mesh. Con-
versely, if a FaceElement imposes a boundary condition via Lagrange-multipliers, the dofs that represent
these Lagrange multipliers must be classified by the FaceElements since the "bulk elements" are not
aware of them.
If oomph-lib is compiled with the PARANOID flag, an error is thrown if any of the global unknowns are
not associated with a dof type.

• Blocks: The blocks are the sub-blocks of the system matrix (usually the Jacobian matrix from the Newton
method) that the block preconditioner works with. By default, each block is associated with exactly one dof
type. However, it is possible create "compound blocks" that are associated with more than one dof type. For
example, in the Navier-Stokes LSC preconditioner (in 2D) we have three dof types (the x and y-velocities
and the pressure), but the preconditioner works with just two block types (forming the velocity and pressure
blocks). The setup of the block types is handled by the function block_setup(...) discussed below.

1.3 Simple preconditioner examples

We will now illustrate the capabilities of the block preconditioning framework by considering the system of N coupled
PDEs (

∂2ui

∂x2
j

+ β

N∑
k=1

uk

)
= fi(xj) i = 1, ..., N (1)

for the N fields ui(xj). If β = 0, the system represents N (uncoupled) Poisson equations, each with their own
source function fi(xj). If β ̸= 0 the PDE for ui(xj) is affected by all other fields via the Helmholtz-like second term
on the left-hand-side.

The MultiPoissonElements discretise the equations with standard Galerkin-type finite elements in which
each field is treated as its own dof type. If N = 5, the linear system to be solved in the course of the Newton
method,

J δx = −r, (2)

has a 5 × 5 block structure implying that, following a formal re-numbering of the unknowns, the matrix and the
vectors can be written as

J =


J11 J12 J13 J14 J15
J21 J22 J23 J24 J25
J31 J32 J33 J34 J35
J41 J42 J43 J44 J45
J51 J52 J53 J54 J55

 , δx =


δx1

δx2

δx3

δx4

δx5

 and r =


r1
r2
r3
r4
r5

 . (3)

We wish to solve this linear system by preconditioned Krylov subspace methods, using a block preconditioner P
formed (formally) from the blocks of the system matrix J . As discussed above, the application of the preconditioner
(typically once per iteration of the Krylov solver) then requires the solution of linear systems of the form Py = z,
for y. The preconditioning operation can also be written as y = P−1z where the operator P−1 represents the
application of the preconditioner to a vector z. Formally, the operator P−1 represents the inverse of the matrix P
but its application may, of course, be performed
approximately by another `‘subsidiary’' preconditioner/inexact solver e.g. by performing a small number of multigrid
cycles, say. (Note that we say `‘formally’' because the preconditioner does not actually have to be associated with a
specific matrix – it simply has to act as a linear operator that `‘turns z into y’').

A specific block preconditioner must be derived from the BlockPreconditioner base class and must imple-
ment two pure virtual member functions of the underlying Preconditioner class:

Generated by Doxygen

6 oomph-lib's Block Preconditioning Framework

• void Preconditioner::setup(): This function is called once during the solution of a given linear
system by any of oomph-lib 's Krylov subspace solvers. It typically extracts a certain number of blocks from
the matrix J, possibly manipulates its local copies of these blocks, and performs any preliminary computations
required to allow the rapid subsequent application of P−1.

• void Preconditioner::preconditioner_solve(z, y): This function applies P−1 to the input
argument z and computes y, typically using some data that has been pre-computed in the setup() function.

To allow a block preconditioner to classify all dofs, the preconditioner must be given access to all elements that
contribute to the linear system to be solved. This is done by specifying pointers to these elements via one or more
Mesh objects (which simply act as containers for the element pointers), using the functions set_nmesh(...)
(which specifies how many meshes the preconditioner works with) and set_mesh(...).

We will discuss the implementation of the required functions (and associated capabilities of the block preconditioning
framework) in a number of increasingly complex block preconditioners for the solution of the 5 × 5 linear system
defined by equations (2) and (3). We stress that the purpose of this exercise is not the development of particularly
clever preconditioners but simply an excuse to demonstrate the use of the available `‘machinery’'. Specifically we
will demonstrate how to:

• extract selected blocks from the system matrix (usually the Jacobian matrix assembled by the Newton solver).

• perform matrix vector products with selected off-diagonal blocks.

• solve linear systems associated with selected blocks, using either a direct solver and/or subsidiary precon-
ditioners (inexact solvers), including cases where the subsidiary preconditioners are block preconditioners
themselves.

• replace and modify selected blocks and how to make such modified blocks available to subsidiary block
preconditioners.

• concatenate and coarsen blocks.

1.3.1 A block diagonal preconditioner

NEW FEATURES: How to extract matrix blocks and corresponding block vectors from their full-size counterparts

1.3.1.1 Theory

The simplest possible block preconditioner is a block-diagonal preconditioner, formed by retaining only the diagonal
blocks of J, so that

P =


J11

J22
J33

J44
J55

 . (4)

The application of this preconditioner (i.e. the solution of the linear system Py = z for y) requires the solution of
the five much smaller linear systems

J11 y1 = z1,
J22 y2 = z2,
J33 y3 = z3,
J44 y4 = z4,
J55 y5 = z5,

(5)

where we have assumed that the two vectors y and z are re-ordered into `‘block vectors’' in the same way as the
vectors δx and r in "the original linear system" (2) are re-ordered into the `‘block vectors’' in (3).
The implementation of the preconditioning operations in (5) can naturally be subdivided into two distinct setup()
and preconditioner_solve(...) phases. Assuming that the linear systems in (5) are solved exactly by a
direct solver (an `‘exact preconditioner’') that can pre-compute and store the LU decomposition of the diagonal matrix
blocks, the setup() phase involves the following operations [text in square brackets refers to their oomph-lib
-specific implementation]:

Generated by Doxygen

1.3 Simple preconditioner examples 7

• Set up any data structures/lookup tables that are required to extract matrix blocks from the original matrix J
[by calling the BlockPreconditioner::block_setup() function].

• Extract the five diagonal blocks Jii (for i = 1, ..., 5) [using the BlockPreconditioner::get_←↩

block(...) function].

• Compute and store the LU decomposition of the diagonal blocks to allow the rapid solution of the systems
Jii yi = zi (for i = 1, ..., 5) during the preconditioner_solve(...) phase by back-substitution.
[This is done by calling the setup(...) function of the subsidiary preconditioner/inexact solver. Following
this, the diagonal matrix blocks are longer required and can be deleted.]

Once the setup() phase has been completed, the solution of the linear system Py = z by the
preconditioner_solve(...) function involves the following steps:

• Extract the five `‘block vectors’' zi (for i = 1, ..., 5) from the vector z [using the BlockPreconditioner←↩

::get_block_vectors(...) function].

• Solve the linear systems Jii yi = zi for the vectors yi (for i = 1, ..., 5) using the precomputed LU decompo-
sition of the diagonal blocks Jii (for i = 1, ..., 5) created during the setup() phase.

• Combine the five `‘block vectors’' yi (for i = 1, ..., 5) to the full-length vector y [using the Block←↩

Preconditioner::return_block_vectors(...) function].

1.3.1.2 Implementation as a BlockPreconditioner

Here is a sample implementation of the diagonal block preconditioner as a class Diagonal, derived from the
BlockPreconditioner base class. The class provides storage for the subsidiary preconditioners that solve
the linear systems associated with the diagonal blocks, implements the setup() and preconditioner_←↩

solve(...) functions, and provides a helper function clean_up_my_memory() which does what it says.
We also provide an access function which allows the user to specify the pointer to the Mesh that contains the
MultiPoissonElements which classify the dofs.
//=========================start_of_diagonal_class=============================
/// Simple proof-of-concept block diagonal preconditioner for
/// demo purposes. There’s a much better version in src/generic!
//===
template<typename MATRIX>
class Diagonal : public BlockPreconditioner<MATRIX>
{

public :

/// Constructor for Diagonal preconditioner
Diagonal() : BlockPreconditioner<MATRIX>()
{
Multi_poisson_mesh_pt=0;
} // end_of_constructor

/// Destructor - delete the subsidiary preconditioners (solvers for
/// linear systems involving diagonal block)
~Diagonal()
{
this->clean_up_my_memory();
}

/// clean up the memory
virtual void clean_up_my_memory();

/// Broken copy constructor
Diagonal(const Diagonal&)
{
BrokenCopy::broken_copy("Diagonal");
}

/// Broken assignment operator
void operator=(const Diagonal&)
{
BrokenCopy::broken_assign("Diagonal");
}

/// Setup the preconditioner
void setup();

// Use the version in the Preconditioner base class for the alternative
// setup function that takes a matrix pointer as an argument.
using Preconditioner::setup;

Generated by Doxygen

8 oomph-lib's Block Preconditioning Framework

/// Apply preconditioner to r, i.e. return solution of P z = r
void preconditioner_solve(const DoubleVector &r, DoubleVector &z);

/// Specify the mesh that contains multi-poisson elements
void set_multi_poisson_mesh(Mesh* multi_poisson_mesh_pt)
{
Multi_poisson_mesh_pt=multi_poisson_mesh_pt;
}

private :

/// Vector of pointers to preconditioners/inexact solvers
/// for each diagonal block
Vector<Preconditioner*> Diagonal_block_preconditioner_pt;

/// Mesh pointers with preconditionable elements used
/// for classification of dof types.
Mesh* Multi_poisson_mesh_pt;

};

1.3.1.3 The setup() function

As mentioned above, a Preconditioner's setup() function is called at the beginning of the Iterative←↩

LinearSolver's solve(...) function. In time-dependent and/or nonlinear problems many (different) linear
systems have to be solved by the same linear solver (and the associated preconditioner) throughout the code
execution. To avoid memory leaks it is therefore important to free up any memory that may have been allocated in
any previous use of the preconditioner. The setup() function of all block preconditioner should therefore always
start by freeing up such memory. This is best done by using a helper function that can also be called from the
destructor.
//=========================start_of_setup_for_simple========================
/// The setup function.
//==
template<typename MATRIX>
void Diagonal<MATRIX>::setup()
{
// clean the memory
this->clean_up_my_memory();

Next we set the pointer to the preconditioner's one-and-only mesh, and call the block_setup() function to set
up the internal data structures and lookup tables required to extract blocks from the system matrix.
#ifdef PARANOID

if (Multi_poisson_mesh_pt == 0)
{
std::stringstream err;
err « "Please set pointer to mesh using set_multi_poisson_mesh(...).\n";
throw OomphLibError(err.str(),

OOMPH_CURRENT_FUNCTION,
OOMPH_EXCEPTION_LOCATION);

}
#endif

// The preconditioner works with one mesh; set it!
this->set_nmesh(1);
this->set_mesh(0,Multi_poisson_mesh_pt);

// Set up the generic block lookup scheme
this->block_setup();

We create five subsidiary preconditioners (all exact solvers – SuperLU in its incarnation as an "exact" preconditioner)
for the solution of the linear systems involving the diagonal blocks:

// Extract the number of blocks
unsigned nblock_types = this->nblock_types();
// Create the subsidiary preconditioners
Diagonal_block_preconditioner_pt.resize(nblock_types);
for (unsigned i=0;i<nblock_types;i++)
{
Diagonal_block_preconditioner_pt[i] = new SuperLUPreconditioner;
}

Next we set up the subsidiary preconditioner by extracting the diagonal blocks from the system matrix and passing
them to the subsidiary preconditioners.
Note that each preconditioner is expected to retain a copy of whatever data it needs to subsequently perform
its preconditioner_solve(...) function. The deep copy of the block that is returned by the get_←↩

block(...) function can therefore be deleted (here simply go out of scope) once the subsidiary preconditioner
has been set up. (In the specific case of the SuperLUPreconditioner, the setup(...) function computes
and stores the LU decomposition of the matrix; the matrix itself is then no longer required).

// Setup preconditioners
for (unsigned i=0;i<nblock_types;i++)
{
// Get block -- this makes a deep copy of the relevant entries in the
// full Jacobian (i.e. the matrix of the linear system we’re

Generated by Doxygen

1.3 Simple preconditioner examples 9

// actually trying to solve); we can do with this copy whatever
// we want...
CRDoubleMatrix block;
this->get_block(i,i,block);

// Set up preconditioner (i.e. lu-decompose the block)
Diagonal_block_preconditioner_pt[i]->setup(&block);

// Done with this block now, so the diagonal block that we extracted
// above can go out of scope. Its LU decomposition (which is the only
// thing we need to apply the preconditioner in the preconditioner_solve(...)
// function) is retained in the associated sub-preconditioner/(in)exact
// solver(SuperLU).
}

1.3.1.4 The preconditioner_solve() function

To apply the preconditioner to a given vector, r, we first extract the five block-vectors whose sizes (and permutations)
match that of the diagonal matrix blocks, using the get_block_vectors(...) function.
//==
/// Preconditioner solve for the diagonal preconditioner:
/// Apply preconditioner to r and return z, so that P z = r, where
/// P is the block diagonal matrix constructed from the original
/// linear system.
//==
template<typename MATRIX>
void Diagonal<MATRIX>::
preconditioner_solve(const DoubleVector& r, DoubleVector& z)
{
// Get number of blocks
unsigned nblock_types = this->nblock_types();
// Split up rhs vector into sub-vectors, re-arranged to match
// the matrix blocks
Vector<DoubleVector> block_r;
this->get_block_vectors(r,block_r);

We then provide storage for the five solution vectors and compute them by applying the subsidiary preconditioners'
preconditioner_solve(...) function:

// Solution of block solves
Vector<DoubleVector> block_z(nblock_types);
for (unsigned i = 0; i < nblock_types; i++)
{
Diagonal_block_preconditioner_pt[i]->preconditioner_solve(block_r[i],

block_z[i]);
}

Finally the solutions in block_z are returned into the full-length solution vector z via a call to return_block←↩

_vectors(...).
// Copy solution in block vectors block_z back to z
this->return_block_vectors(block_z,z);

}

1.3.1.5 The clean_up_my_memory() function

This function (which is called by the setup() function and the destructor) frees the memory that is allocated when
a new linear system is solved – here the subsidiary preconditioners and their associated data (the LU decomposi-
tions of the diagonal blocks).
//=========================start_of_clean_up_for_simple=======================
/// The clean up function.
//==
template<typename MATRIX>
void Diagonal<MATRIX>::clean_up_my_memory()
{
// Delete diagonal preconditioners (approximate solvers)
unsigned n_block = Diagonal_block_preconditioner_pt.size();
for (unsigned i=0;i<n_block;i++)
{
if(Diagonal_block_preconditioner_pt[i]!=0)
{
delete Diagonal_block_preconditioner_pt[i];
Diagonal_block_preconditioner_pt[i]=0;
}

}
} // End of clean_up_my_memory function.

1.3.1.6 Comments and Exercises

• The function get_block_vectors(r,block_r) extracts the five (or, in general, nblock_type()
) block vectors block_r from the full-length vector r. The sizes of the block vectors (and the permutation

Generated by Doxygen

10 oomph-lib's Block Preconditioning Framework

of their entries relative to their order in the full length vector r) match that of the matrix blocks. There is an
alternative function get_block_vector(...) (note the missing s) which extracts a single block vector.
An equivalent version exists for the return_block_vector[s] functions.

• In the example above we used an "exact preconditioner" (direct solver) to solve the five linear systems associ-
ated with the diagonal blocks. However, the (approximate) solution of these linear systems can be performed
by any other matrix-based preconditioner, such as oomph-lib's diagonal preconditioner, Matrix←↩

BasedDiagPreconditioner, discussed in another tutorial. The setup and application of
this preconditioner is obviously much faster than for the SuperLUPreconditioner. Its setup merely
requires the extraction of the diagonal entries and storage of their inverses (rather than the computation of
the LU decomposition), while the application simply requires the multiplication of the input vector by the pre-
computed inverses of the diagonal entries (rather than a back-substitution). However, the preconditioner is
clearly not "as good" and therefore results in a larger number of iterations in the iterative linear solver. In fact,
using the diagonal preconditioner for the approximate solution of the five linear systems involving the diagonal
blocks is mathematically equivalent to using the diagonal preconditioner on the entire matrix. Try it out!

1.3.2 A block upper triangular preconditioner

NEW FEATURES: How to set up matrix vector products with off-diagonal blocks

1.3.2.1 Theory

Next we consider the implementation of an upper triangular preconditioner, formed by retaining only the blocks in
the upper right hand part of J, including the diagonals.

P =


J11 J12 J13 J14 J15

J22 J23 J24 J25
J33 J34 J35

J44 J45
J55

 . (6)

The application of this preconditioner (i.e. the solution of the linear system Py = z for y) again requires the solution
of five much smaller linear systems

J11 y1 = z̃1 = z1 − J15 y5 − J14 y4 − J13 y3 − J12 y2,
J22 y2 = z̃2 = z2 − J25 y5 − J24 y4 − J23 y3,
J33 y3 = z̃3 = z3 − J35 y5 − J34 y4,
J44 y4 = z̃4 = z4 − J45 y5,
J55 y5 = z̃5 = z5,

(7)

where we have again assumed that the two vectors y and z are re-ordered into `‘block vectors’' in the same way as
the vectors δx and r in "the original linear system" (2) are re-ordered into the `‘block vectors’' in (3).
The main difference to the block diagonal preconditioner considered before is that the right hand sides of the linear
systems have to be modified. We start by solving the final equation for y5. We then multiply this vector by the
off-diagonal block J45, subtract the result from z4 and use the result of this operation as the right-hand-side for the
linear system that determines y4, etc.
The implementation of the preconditioning operations in (7) can again be subdivided into two distinct setup()
and preconditioner_solve(...) phases. Assuming that the linear systems in (7) are solved exactly by a
direct solver (an `‘exact preconditioner’') that can pre-compute and store the LU decomposition of the diagonal matrix
blocks, the setup() phase involves the following operations [text in square brackets refers to their oomph-lib
specific implementation]:

• Set up any data structures/lookup tables that are required to extract matrix blocks from the original matrix J
[by calling the BlockPreconditioner::block_setup() function].

• Extract the five diagonal blocks Jii (for i = 1, ..., 5) [using the BlockPreconditioner::get_←↩

block(...) function].

• Compute and store the LU decomposition of the diagonal blocks to allow the rapid solution of the systems
Jii yi = z̃i (for i = 1, ..., 5) during the preconditioner_solve(...) phase by back-substitution.
[This is done by calling the setup(...) function of the subsidiary preconditioner/inexact solver. Following
this, the diagonal matrix blocks are longer required and can be deleted.]

Generated by Doxygen

../../../linear_solvers/html/index.html

1.3 Simple preconditioner examples 11

• Extract the relevant off-diagonal blocks from J and create MatrixVectorProduct operators. [The matrix
vector products are set up using the setup_matrix_vector_product(...) function. As with the
subsidiary preconditioners, the MatrixVectorProduct operators retain their own copy of any required
data, so the off-diagonal matrix blocks can be deleted (or be allowed to go out of scope) following the setup.]

1.3.2.2 Implementation as a BlockPreconditioner

Here is a sample implementation of the upper triangular block preconditioner as a class UpperTriangular,
derived from the BlockPreconditioner base class. The class provides storage for the subsidiary precon-
ditioners that solve the linear systems associated with the diagonal blocks, and the MatrixVectorProduct
operators. We also implement the setup() and preconditioner_solve(...) functions, and provide a
helper function clean_up_my_memory() which does what it says. As before we also provide an access func-
tion which allows the user to specify the pointer to the Mesh that contains the MultiPoissonElements which
classify the dofs.
//=========================start_of_upper_triangular_class=====================
/// Upper triangular preconditioner for a system
/// with any number of dof types.
//===
template<typename MATRIX>
class UpperTriangular : public BlockPreconditioner<MATRIX>
{

public :

/// Constructor.
UpperTriangular() : BlockPreconditioner<MATRIX>()
{
Multi_poisson_mesh_pt=0;
}

/// Destructor - delete the preconditioner matrices
virtual ~UpperTriangular()
{
this->clean_up_my_memory();
}

/// clean up the memory
virtual void clean_up_my_memory();

/// Broken copy constructor
UpperTriangular(const UpperTriangular&)
{
BrokenCopy::broken_copy("UpperTriangular");
}

/// Broken assignment operator
void operator=(const UpperTriangular&)
{
BrokenCopy::broken_assign("UpperTriangular");
}

/// Apply preconditioner to r
void preconditioner_solve(const DoubleVector &r, DoubleVector &z);

/// Setup the preconditioner
void setup();

// Use the version in the Preconditioner base class for the alternative
// setup function that takes a matrix pointer as an argument.
using Preconditioner::setup;

/// Specify the mesh that contains multi-poisson elements
void set_multi_poisson_mesh(Mesh* multi_poisson_mesh_pt)
{
Multi_poisson_mesh_pt=multi_poisson_mesh_pt;
}

private:

/// Pointers to matrix vector product operators for the off diagonals
DenseMatrix<MatrixVectorProduct*> Off_diagonal_matrix_vector_product_pt;

/// Vector of pointers to preconditioners/inexact solvers
/// for each diagonal block
Vector<Preconditioner*> Block_preconditioner_pt;

/// Pointer to mesh with preconditionable elements used
/// for classification of dof types.
Mesh* Multi_poisson_mesh_pt;

};

Generated by Doxygen

12 oomph-lib's Block Preconditioning Framework

1.3.2.3 The setup() function

As before, we start by cleaning up the memory, set the pointer to the mesh, and set up the generic block precondi-
tioner functionality by calling block_setup().
//========================start_of_setup_for_upper_triangular_class===========
/// The setup function.
//==
template<typename MATRIX>
void UpperTriangular<MATRIX>::setup()
{
// clean the memory
this->clean_up_my_memory();

#ifdef PARANOID
if (Multi_poisson_mesh_pt == 0)
{
std::stringstream err;
err « "Please set pointer to mesh using set_multi_poisson_mesh(...).\n";
throw OomphLibError(err.str(),

OOMPH_CURRENT_FUNCTION,
OOMPH_EXCEPTION_LOCATION);

}
#endif

// The preconditioner works with one mesh; set it!
this->set_nmesh(1);
this->set_mesh(0,Multi_poisson_mesh_pt);
// Set up the block look up schemes
this->block_setup();

We provide storage for the (pointers to the) matrix vector products and the subsidiary preconditioners.
// Number of block types
unsigned nblock_types = this->nblock_types();
// Storage for the pointers to the off diagonal matrix vector products
// and the the subsidiary preconditioners (inexact solvers) for the diagonal
// blocks
Off_diagonal_matrix_vector_product_pt.resize(nblock_types,nblock_types,0);
Block_preconditioner_pt.resize(nblock_types);

Next we create the subsidiary preconditioners which we will use to solve the linear systems involving the diagonal
blocks.

// Build the preconditioners and matrix vector products
for(unsigned i = 0; i < nblock_types; i++)
{
// Create the subsidiary preconditioners
Block_preconditioner_pt[i] = new SuperLUPreconditioner;

// Put in braces so block matrix goes out of scope when done...
{
// Get block -- this makes a deep copy of the relevant entries in the
// full Jacobian (i.e. the matrix of the linear system we’re
// actually trying to solve); we can do with this copy whatever
// we want...
CRDoubleMatrix block;
this->get_block(i,i,block);

// Set up preconditioner (i.e. lu-decompose the block)
Block_preconditioner_pt[i]->setup(&block);

// Done with this block now, so the diagonal block that we extracted
// above can go out of scope. Its LU decomposition (which is the only
// thing we need to apply the preconditioner in the
// preconditioner_solve(...) function) is retained in the associated
// sub-preconditioner/(in)exact solver(SuperLU).

} // end of brace to make block go out of scope

We then extract the relevant off-diagonal blocks (those above the diagonal) from the full matrix, create a Matrix←↩

VectorProduct operator for each and use the BlockPreconditioner::setup_matrix_vector_←↩

product(...) function to make them fully functional. Note that the final argument to this function (the column
index of the off-diagonal block in its block enumeration within the current preconditioner) is required to set up addi-
tional lookup tables that are required to ensure the correct operation of this object in cases when the preconditioner
operates in parallel. The details are messy and not worth explaining here – just do it!

// Next set up the off diagonal mat vec operators
for(unsigned j=i+1;j<nblock_types;j++)
{
// Get the off diagonal block
CRDoubleMatrix block_matrix = this->get_block(i,j);
// Create a matrix vector product operator
Off_diagonal_matrix_vector_product_pt(i,j) = new MatrixVectorProduct;
// Setup the matrix vector product for the currrent block matrix
// and specify the column in the "big matrix" as final argument.
// This is needed for things to work properly in parallel -- don’t ask!
this->setup_matrix_vector_product(
Off_diagonal_matrix_vector_product_pt(i,j),&block_matrix,j);
// Done with this block now, so the diagonal block that we extracted
// above can go out of scope. The MatrixVectorProduct operator retains

Generated by Doxygen

1.3 Simple preconditioner examples 13

// its own copy of whatever data it needs.
} // End for loop over j

} // End for loop over i
} // End setup(...)

1.3.2.4 The preconditioner_solve() function

As in the block diagonal preconditioner, we start by extracting the block vectors from the full-length vector, r.
//===
/// Preconditioner solve for the upper triangular preconditioner:
/// Apply preconditioner to r and return z, so that P z = r, where
/// P is the block diagonal matrix constructed from the original
/// linear system.
//===
template<typename MATRIX> void UpperTriangular<MATRIX>::
preconditioner_solve(const DoubleVector& r, DoubleVector& z)
{
// Get number of blocks
unsigned n_block = this->nblock_types();
// vector of vectors for each section of rhs vector
Vector<DoubleVector> block_r;

// rearrange the vector r into the vector of block vectors block_r
this->get_block_vectors(r,block_r);

Next we provide storage for the solution vectors and work backwards through the (block)-rows of the (block-)linear
system (7). Following each linear solve we update the right-hand-side of the next linear system, as discussed above.

// Vector of vectors for the solution block vectors
Vector<DoubleVector> block_z(n_block);
// Required to be an int due to an unsigned being unable to be compared to a
// negative number (because it would roll over).
for (int i=n_block-1;i>-1;i--)
{
// Back substitute
for (unsigned j=i+1;j<n_block;j++)
{
DoubleVector temp;
Off_diagonal_matrix_vector_product_pt(i,j)->multiply(block_z[j],temp);
block_r[i] -= temp;
} // End for over j

// Solve on the block
this->Block_preconditioner_pt[i]->
preconditioner_solve(block_r[i], block_z[i]);

} // End for over i

Finally, the solutions in block_z are combined via return_block_vectors(...) which places the results
back into the full-length vector z that is returned by this function.

// Copy solution in block vectors block_r back to z
this->return_block_vectors(block_z,z);

}

1.3.2.5 The clean_up_my_memory() function

This function again deletes any data that was allocated in the setup function – here the subsidiary preconditioners
(and their LU decompositions) and the matrix-vector product operators.
//========================start_of_clean_up_for_upper_triangular_class========
/// The clean up function.
//==
template<typename MATRIX>
void UpperTriangular<MATRIX>::clean_up_my_memory()
{
// Delete anything in Off_diagonal_matrix_vector_products
for(unsigned i=0,ni=Off_diagonal_matrix_vector_product_pt.nrow();i<ni;i++)
{
for(unsigned j=0,nj=Off_diagonal_matrix_vector_product_pt.ncol();j<nj;j++)
{
if(Off_diagonal_matrix_vector_product_pt(i,j) != 0)
{
delete Off_diagonal_matrix_vector_product_pt(i,j);
Off_diagonal_matrix_vector_product_pt(i,j) = 0;

}
}

}
// Delete preconditioners (approximate solvers)
unsigned n_block = Block_preconditioner_pt.size();
for (unsigned i=0;i<n_block;i++)
{
if(Block_preconditioner_pt[i]!=0)
{
delete Block_preconditioner_pt[i];
Block_preconditioner_pt[i]=0;
}

}

Generated by Doxygen

14 oomph-lib's Block Preconditioning Framework

} // End of clean_up_my_memory function.

1.3.3 Combining multiple dof types into compound blocks. Part 1

NEW FEATURES: How to combine multiple dof types into compound blocks

1.3.3.1 Theory

So far we have illustrated how to implement block preconditioners for cases where the dof types (as identified by
the elements) correspond directly to the block types. This is appropriate for our model PDE system (1) in which the
five fields (and the governing equations) are all of the same type. In many applications, particularly in multi-physics
problems, it may be desirable to combine similar/related dof types into single blocks. For instance, in a 2D fluid-
structure interaction problem, we may wish to distinguish between the two solid (x and y solid displacements) and
three fluid (x and y fluid velocities and the pressure) dofs and employ subsidiary preconditioners that act directly
on the two distinct solid and fluid blocks. A basic block diagonal preconditioner for such a problem that ignores the
coupling between fluid and solid dofs has the following structure

P =


J11 J12
J21 J22

J33 J34 J35
J43 J44 J45
J53 J54 J55

 =

(
B11

B22

)

where B11 and B22 are the blocks formed from the corresponding "dof blocks" (the Jij matrices). The application
of this preconditioner (i.e. the solution of the linear system Py = z for y) requires the solution of the two smaller
linear systems (

J11 J12
J21 J22

)(
y1
y2

)
=

(
z1
z2

)
or B11 Y1 = Z1 (8)

and  J33 J34 J35
J43 J44 J45
J53 J54 J55

 y3
y4
y5

 =

 z3
z4
z5

 or B22 Y2 = Z2. (9)

A key feature of the block preconditioning framework is the ability to combine dof types in this manner so that the
preconditioner can operate directly with blocks B11 and B22 and the corresponding block vectors Y1, Y2, Z1 and
Z2.
Assuming again that the linear systems in (8) and (9) are solved exactly by a direct solver (an `‘exact precondi-
tioner’') that can pre-compute and store the LU decomposition of the diagonal matrix blocks, B11 and B22, the
setup() phase involves the following operations [text in square brackets refers to their oomph-lib specific
implementation]:

• Set up any data structures/lookup tables that are required to extract the matrix blocks B11 and B22 and the
associated block vectors [by calling the BlockPreconditioner::block_setup(...) function –
this time with arguments that specify the mapping between "dof types" and "block types"].

• Extract the two diagonal blocks, B11 and B22 [using the BlockPreconditioner::get_block(...)
function].

• Compute and store the LU decomposition of the diagonal blocks to allow the rapid solution of the systems
during the preconditioner_solve(...) phase by back-substitution. [This is done by calling the
setup(...) function of the subsidiary preconditioner/inexact solver. Following this, the diagonal matrix
blocks are longer required and can be deleted.]

Once the setup() phase has been completed, the solution of the linear system Py = z by the
preconditioner_solve(...) function involves the following steps:

• Extract the two `‘block vectors’' Zi (for i = 1, 2) from the vector z [using the BlockPreconditioner←↩

::get_block_vectors(...) function].

• Solve the linear systems Bii Yi = Zi for the vectors Yi (for i = 1, 2) using the precomputed LU decompo-
sition of the diagonal blocks Bii (for i = 1, 2) created during the setup() phase.

• Combine the two `‘block vectors’' Yi (for i = 1, ..., 2) to the full-length vector y [using the Block←↩

Preconditioner::return_block_vectors(...) function].

Generated by Doxygen

1.3 Simple preconditioner examples 15

1.3.3.2 Implementation as a BlockPreconditioner

The implementation of the preconditioner closely follows that of the block diagonal preconditioner discussed above,
the main difference being that the current preconditioner only ever operates with exactly two blocks. Therefore
we store pointers to the two subsidiary preconditioners (rather than a vector of pointers that can store an arbitrary
number of these).
//=======================start_of_two_plus_three_class=========================
/// Block diagonal preconditioner for system with 5 dof types
/// assembled into a 2x2 block system, with (0,0) block containing the
/// first two dof types and the (1,1) block the remaining three dof types.
//===
template<typename MATRIX>
class TwoPlusThree : public BlockPreconditioner<MATRIX>
{
public :

/// Constructor for TwoPlusThree
TwoPlusThree() : BlockPreconditioner<MATRIX>(),
First_subsidiary_preconditioner_pt(0),
Second_subsidiary_preconditioner_pt(0)
{
Multi_poisson_mesh_pt=0;

} // end_of_constructor

/// Destructor - delete the diagonal solvers (subsidiary preconditioners)
~TwoPlusThree()
{
this->clean_up_my_memory();
}
/// clean up the memory
virtual void clean_up_my_memory();

/// Broken copy constructor
TwoPlusThree
(const TwoPlusThree&)
{
BrokenCopy::broken_copy("TwoPlusThree");
}

/// Broken assignment operator
void operator=(const TwoPlusThree&)
{
BrokenCopy::broken_assign("TwoPlusThree");
}

/// Apply preconditioner to r, i.e. return z such that P z = r
void preconditioner_solve(const DoubleVector &r, DoubleVector &z);

/// Setup the preconditioner
virtual void setup();

/// Specify the mesh that contains multi-poisson elements
void set_multi_poisson_mesh(Mesh* multi_poisson_mesh_pt)
{
Multi_poisson_mesh_pt=multi_poisson_mesh_pt;
}

private :

/// Pointer to preconditioners/inexact solver
/// for (0,0) block
Preconditioner* First_subsidiary_preconditioner_pt;

/// Pointer to preconditioners/inexact solver
/// for (1,1) block
Preconditioner* Second_subsidiary_preconditioner_pt;

/// Pointer to mesh with preconditionable elements used
/// for classification of dof types.
Mesh* Multi_poisson_mesh_pt;

};

1.3.3.3 The setup() function

As usual, we start by freeing up any previously allocated memory, and set the pointer to the mesh:
//====================start_of_setup_for_two_plus_three=======================
/// The setup function.
//==
template<typename MATRIX>
void TwoPlusThree<MATRIX>::setup()
{
// Clean up memory.
this->clean_up_my_memory();

#ifdef PARANOID
if (Multi_poisson_mesh_pt == 0)

Generated by Doxygen

16 oomph-lib's Block Preconditioning Framework

{
std::stringstream err;
err « "Please set pointer to mesh using set_multi_poisson_mesh(...).\n";
throw OomphLibError(err.str(),

OOMPH_CURRENT_FUNCTION,
OOMPH_EXCEPTION_LOCATION);

}
#endif

// The preconditioner works with one mesh; set it!
this->set_nmesh(1);
this->set_mesh(0,Multi_poisson_mesh_pt);

Since this preconditioner assumes explicitly that the problem involves five dof types we check that this is actually
the case.

// How many dof types do we have?
unsigned n_dof_types = this->ndof_types();

#ifdef PARANOID
// This preconditioner only works for 5 dof types
if (n_dof_types!=5)
{
std::stringstream tmp;
tmp « "This preconditioner only works for problems with 5 dof types\n"

« "Yours has " « n_dof_types;
throw OomphLibError(tmp.str(),

OOMPH_CURRENT_FUNCTION,
OOMPH_EXCEPTION_LOCATION);

}
#endif

To indicate that several dof types are to be combined into single blocks, we specify the mapping between dof types
and block types as an argument to the block_setup(...) function This is done by creating vector of length
ndof_type() in which each entry indicates the block that the corresponding dof is supposed to end up in:

// Combine into two blocks, one containing dof types 0 and 1, the
// final one dof types 2-4. In general we want:
// dof_to_block_map[dof_type] = block type
Vector<unsigned> dof_to_block_map(n_dof_types);
dof_to_block_map[0]=0;
dof_to_block_map[1]=0;
dof_to_block_map[2]=1;
dof_to_block_map[3]=1;
dof_to_block_map[4]=1;
this->block_setup(dof_to_block_map);

To show that this actually worked, we output the number of blocks (which should be – and indeed is – equal to two).
// Show that it worked ok:
oomph_info « "Preconditioner has "

« this->nblock_types() « " block types\n";

Next we create the two subsidiary preconditioners and call their setup(...) functions, passing the two diagonal
blocks B11 and B22 to them.
// Create the subsidiary preconditioners
First_subsidiary_preconditioner_pt= new SuperLUPreconditioner;
Second_subsidiary_preconditioner_pt= new SuperLUPreconditioner;

// Set diagonal solvers/preconditioners; put in own scope
// so variable block goes out of scope
{
CRDoubleMatrix block;
this->get_block(0,0,block);
// Set up preconditioner (i.e. lu-decompose the block)
First_subsidiary_preconditioner_pt->setup(&block);
}
{
CRDoubleMatrix block;
this->get_block(1,1,block);

// Set up preconditioner (i.e. lu-decompose the block)
Second_subsidiary_preconditioner_pt->setup(&block);
}

} // End of setup

1.3.3.4 The preconditioner_solve() function

The preconditioner_solve(...) function is equivalent to that in the Diagonal preconditioner discussed
above, though here it simply acts on a 2x2 block system.
//===
/// Preconditioner solve for the two plus three diagonal preconditioner:
/// Apply preconditioner to r and return z, so that P r = z, where
/// P is the block diagonal matrix constructed from the original
/// linear system.
//===
template<typename MATRIX>
void TwoPlusThree<MATRIX>::
preconditioner_solve(const DoubleVector& r, DoubleVector& z)

Generated by Doxygen

1.3 Simple preconditioner examples 17

{
// Get number of blocks
unsigned n_block = this->nblock_types();
// Split up rhs vector into sub-vectors, arranged to match the matrix blocks.
Vector<DoubleVector> block_r;
this->get_block_vectors(r,block_r);
// Create storage for solution of block solves
Vector<DoubleVector> block_z(n_block);
// Solve (0,0) diagonal block system
First_subsidiary_preconditioner_pt->preconditioner_solve(block_r[0],

block_z[0]);

// Solve (1,1) diagonal block system
Second_subsidiary_preconditioner_pt->preconditioner_solve(block_r[1],

block_z[1]);

// Copy solution in block vectors block_z back to z
this->return_block_vectors(block_z,z);

}

1.3.3.5 The clean_up_my_memory() function

This function again deletes the allocated storage – here the subsidiary preconditioners.
//====================start_of_clean_up_for_two_plus_three====================
/// The clean up function.
//==
template<typename MATRIX>
void TwoPlusThree<MATRIX>::clean_up_my_memory()
{
//Clean up subsidiary preconditioners.
if(First_subsidiary_preconditioner_pt!=0)
{
delete First_subsidiary_preconditioner_pt;
First_subsidiary_preconditioner_pt = 0;
}
if(Second_subsidiary_preconditioner_pt!=0)
{
delete Second_subsidiary_preconditioner_pt;
Second_subsidiary_preconditioner_pt = 0;
}

} // End of clean_up_my_memory function.

1.3.4 Combining multiple dof types into compound blocks. Part 2: How to deal with
off-diagonal blocks

NEW FEATURES: How to set up matrix vector products when multiple dof types have been combined into compound
blocks

1.3.4.1 Theory

The extension of the preconditioner introduced in the previous section to block-triangular form is straightforward: We
use the same dof-to-block mapping as before but now retain the off-diagonal block B12 so that the preconditioner
has the structure:

P =


J11 J12 J13 J14 J15
J21 J22 J13 J14 J15

J33 J34 J35
J43 J44 J45
J53 J54 J55

 =

(
B11 B12

B22

)
. (10)

In the FSI context where B11 and B22 represent the solid and fluid sub-blocks, respectively, the inclusion of the
off-diagonal block B12 incorporates the effect of fluid dofs (via pressure and shear stress) onto the solid equations.
Since this captures "more of the physics" the preconditioner can be expected to be better than its block diagonal
counterpart.
The application of the preconditioner (i.e. the solution of the linear system Py = z for y) requires the solution of
the two smaller linear systems

(
J11 J12
J21 J22

)(
y1
y2

)
=

(
z1
z2

)
−
(

J13 J14 J15
J23 J24 J25

) y3
y4
y5

 or B11Y1 = Z1−B12Y2 (11)

Generated by Doxygen

18 oomph-lib's Block Preconditioning Framework

and  J33 J34 J35
J43 J44 J45
J53 J54 J55

 y3
y4
y5

 =

 z3
z4
z5

 or B22Y2 = Z2. (12)

1.3.4.2 Implementation as a BlockPreconditioner

The implementation is very similar to that in the previous example – we simply provide additional storage for the
(single) matrix vector product operator required for the multiplication with B12 when updating the right-hand-side in
equation (11).
//=================start_of_two_plus_three_upper_triangular_class==============
/// Upper triangular two plus three triangular preconditioner for a
/// system with 5 dof types.
//===
template<typename MATRIX>
class TwoPlusThreeUpperTriangular
: public BlockPreconditioner<MATRIX>

{

public :

/// Constructor.
TwoPlusThreeUpperTriangular() :
BlockPreconditioner<MATRIX>(),
Off_diagonal_matrix_vector_product_pt(0),
First_subsidiary_preconditioner_pt(0),
Second_subsidiary_preconditioner_pt(0)
{
Multi_poisson_mesh_pt=0;
}

/// Destructor - delete the preconditioner matrices
virtual ~TwoPlusThreeUpperTriangular()
{
this->clean_up_my_memory();
}

/// clean up the memory
virtual void clean_up_my_memory();

/// Broken copy constructor
TwoPlusThreeUpperTriangular(const TwoPlusThreeUpperTriangular&)
{
BrokenCopy::broken_copy("TwoPlusThreeUpperTriangular");
}

/// Broken assignment operator
void operator=(const TwoPlusThreeUpperTriangular&)
{
BrokenCopy::broken_assign("TwoPlusThreeUpperTriangular");
}

/// Apply preconditioner to r
void preconditioner_solve(const DoubleVector &r, DoubleVector &z);

/// Setup the preconditioner
void setup();

// Use the version in the Preconditioner base class for the alternative
// setup function that takes a matrix pointer as an argument.
using Preconditioner::setup;

/// Specify the mesh that contains multi-poisson elements
void set_multi_poisson_mesh(Mesh* multi_poisson_mesh_pt)
{
Multi_poisson_mesh_pt=multi_poisson_mesh_pt;
}

private:

/// Pointer to matrix vector product operator for the single off diagonals
MatrixVectorProduct* Off_diagonal_matrix_vector_product_pt;

/// Pointer to preconditioners/inexact solver
/// for (0,0) block
Preconditioner* First_subsidiary_preconditioner_pt;

/// Pointer to preconditioners/inexact solver
/// for (1,1) block
Preconditioner* Second_subsidiary_preconditioner_pt;

/// Pointer to mesh with preconditionable elements used

Generated by Doxygen

1.3 Simple preconditioner examples 19

/// for classification of dof types.
Mesh* Multi_poisson_mesh_pt;

};

1.3.4.3 The setup() function

As before, we start by freeing up any previously allocated memory and set the pointer to the mesh,
//==============start_of_setup_for_two_plus_three_upper_triangular_class=======
/// The setup function.
//==
template<typename MATRIX>
void TwoPlusThreeUpperTriangular<MATRIX>::setup()
{
// clean the memory
this->clean_up_my_memory();

#ifdef PARANOID
if (Multi_poisson_mesh_pt == 0)
{
std::stringstream err;
err « "Please set pointer to mesh using set_multi_poisson_mesh(...).\n";
throw OomphLibError(err.str(),

OOMPH_CURRENT_FUNCTION,
OOMPH_EXCEPTION_LOCATION);

}
#endif

// The preconditioner works with one mesh; set it!
this->set_nmesh(1);
this->set_mesh(0,Multi_poisson_mesh_pt);

and check that the number of dof types is correct.
// Get number of degrees of freedom.
unsigned n_dof_types = this->ndof_types();

#ifdef PARANOID
// This preconditioner only works for 5 dof types
if (n_dof_types!=5)
{
std::stringstream tmp;
tmp « "This preconditioner only works for problems with 5 dof types\n"

« "Yours has " « n_dof_types;
throw OomphLibError(tmp.str(),

OOMPH_CURRENT_FUNCTION,
OOMPH_EXCEPTION_LOCATION);

}
#endif

The block setup is again performed with a dof-to-block mapping that results in a block preconditioner with 2x2 blocks.
// Combine into two major blocks, one containing dof types 0 and 1, the
// final one dof types 2-4. In general we want
// dof_to_block_map[dof_type] = block_type
Vector<unsigned> dof_to_block_map(n_dof_types);
dof_to_block_map[0]=0;
dof_to_block_map[1]=0;
dof_to_block_map[2]=1;
dof_to_block_map[3]=1;
dof_to_block_map[4]=1;
this->block_setup(dof_to_block_map);

We create the two subsidiary preconditioners and pass the two diagonal blocks B11 and B22 to their setup()
functions. As before, the deep copies of these matrices are then allowed to go out of scope, freeing up the memory,
since the subsidiary preconditioners retain whatever information they require.

// Create the subsidiary preconditioners
First_subsidiary_preconditioner_pt= new SuperLUPreconditioner;
Second_subsidiary_preconditioner_pt= new SuperLUPreconditioner;
// Set diagonal solvers/preconditioners; put in own scope
// so block goes out of scope
{
CRDoubleMatrix block;
this->get_block(0,0,block);

// Set up preconditioner (i.e. lu-decompose the block)
First_subsidiary_preconditioner_pt->setup(&block);
}
{
CRDoubleMatrix block;
this->get_block(1,1,block);

// Set up preconditioner (i.e. lu-decompose the block)
Second_subsidiary_preconditioner_pt->setup(&block);
} // end setup of last subsidiary preconditioner

Finally we create and set up the off-diagonal vector product. Note that the block column index refers to the block
enumeration, so the block column index of B12 is 1 (in a C++ zero-based enumeration!).

// next setup the off diagonal mat vec operators
{
// Get the block

Generated by Doxygen

20 oomph-lib's Block Preconditioning Framework

CRDoubleMatrix block_matrix = this->get_block(0,1);
// Create matrix vector product
Off_diagonal_matrix_vector_product_pt = new MatrixVectorProduct;
// Set it up -- note that the block column index refers to the
// block enumeration (not the dof enumeration)
unsigned block_column_index=1;
this->setup_matrix_vector_product(
Off_diagonal_matrix_vector_product_pt,&block_matrix,block_column_index);

}

1.3.4.4 The preconditioner_solve() function

The application of the preconditioner is the exact equivalent of that of the general-purpose block triangular precon-
ditioner discussed above, restricted to a 2x2 system:
//===
/// Preconditioner solve for the two plus three upper block triangular
/// preconditioner:
/// Apply preconditioner to r and return z, so that P z = r, where
/// P is the block diagonal matrix constructed from the original
/// linear system.
//===
template<typename MATRIX>
void TwoPlusThreeUpperTriangular<MATRIX>::
preconditioner_solve(const DoubleVector& r, DoubleVector& z)
{
// Get number of blocks
unsigned n_block = this->nblock_types();
// Split up rhs vector into sub-vectors, rarranged to match the matrix blocks.
Vector<DoubleVector> block_r;
this->get_block_vectors(r,block_r);
// Create storage for solution of block solves
Vector<DoubleVector> block_z(n_block);
// Solve (1,1) diagonal block system
Second_subsidiary_preconditioner_pt->preconditioner_solve(block_r[1],

block_z[1]);
// Solve (0,1) off diagonal.
// Substitute
DoubleVector temp;
Off_diagonal_matrix_vector_product_pt->multiply(block_z[1],temp);
block_r[0] -= temp;
// Solve (0,0) diagonal block system
First_subsidiary_preconditioner_pt->preconditioner_solve(block_r[0],

block_z[0]);
// Copy solution in block vectors block_z back to z
this->return_block_vectors(block_z,z);

}

1.3.4.5 The clean_up_my_memory() function

As before, this function frees up any memory that has been allocated in the setup() function.
//===========start_of_clean_up_for_two_plus_three_upper_triangular_class======
/// The clean up function.
//==
template<typename MATRIX>
void TwoPlusThreeUpperTriangular<MATRIX>::clean_up_my_memory()
{
// Delete of diagonal matrix vector product
if (Off_diagonal_matrix_vector_product_pt != 0)
{
delete Off_diagonal_matrix_vector_product_pt;
Off_diagonal_matrix_vector_product_pt = 0;
}
//Clean up subsidiary preconditioners.
if(First_subsidiary_preconditioner_pt!=0)
{
delete First_subsidiary_preconditioner_pt;
First_subsidiary_preconditioner_pt = 0;
}
if(Second_subsidiary_preconditioner_pt!=0)
{
delete Second_subsidiary_preconditioner_pt;
Second_subsidiary_preconditioner_pt = 0;
}

} // End of clean_up_my_memory function.

1.3.5 Using subsidiary block preconditioners

NEW FEATURES: How to use subsidiary block preconditioners to (approximately) solve linear systems constructed
from subsets of dof-blocks.

Generated by Doxygen

1.3 Simple preconditioner examples 21

1.3.5.1 Theory

The two previous examples were motivated by the observation that in multi-physics problems (such as fluid-structure
interaction) it is natural to combine "related" dof blocks into compound block matrices. We showed that the block
preconditioning framework makes it easy to extract such matrices from the original system matrix and demonstrated
how to solve linear systems involving these matrices with separate subsidiary preconditioners.
One problem with this approach is that, once a compound matrix has been created (by the get_block(...)
function), all information about its dof types is lost, making it impossible to employ block preconditioners as sub-
sidiary preconditioners.
We will now revisit the 2x2 block triangular preconditioner described in the previous example and demonstrate
how to employ subsidiary block preconditioners to (approximately) solve linear systems involving matrices formed
(formally) by compound matrices that are constructed from multiple dof-level blocks. From a mathematical point of
view, the structure of the preconditioner therefore remains unchanged and is given by

P =


J11 J12 J13 J14 J15
J21 J22 J13 J14 J15

J33 J34 J35
J43 J44 J45
J53 J54 J55

 =

(
B11 B12

B22

)
. (13)

We will continue to use a dof-to-block mapping to view this as the 2x2 block matrix shown on the right. This makes
it easy to extract the compound off-diagonal block B12 from the system matrix when setting up the matrix-vector
product (as before). The setup of the subsidiary block preconditioners used to (approximately) solve the linear
systems involving B11 and B22 is handled differently:

• When calling the subsidiary block preconditioner's setup(...) function we pass a pointer to the entire
system matrix, i.e. the matrix containing, formally, all the dof-level blocks in equation (3).

• We then turn the preconditioner into a subsidiary block preconditioner, using its member function turn←↩

_into_subsidiary_block_preconditioner(...) whose arguments specify which of the dof-
level blocks in the current (master) preconditioner are to be used by the subsidiary block preconditioner.

The subsidiary block preconditioner is thus given access to all the information required to extract the relevant data
directly from the original system matrix (and any associated full-length vectors). It is in fact a key design principle of
the block preconditioning framework that subsidiary block preconditioners are given access to the "full size"
matrices and vectors, but only operate on the subset of data that they are "in charge of".
When employing subsidiary block preconditioners for the approximate solution of the two smaller linear systems(

J11 J12
J21 J22

)
︸ ︷︷ ︸

B11

(
y1
y2

)
︸ ︷︷ ︸

Y1

=

(
z1
z2

)
︸ ︷︷ ︸

Z1

−
(

J13 J14 J15
J23 J24 J25

)
︸ ︷︷ ︸

B12

 y3
y4
y5


︸ ︷︷ ︸

Y2

(14) J33 J34 J35
J43 J44 J45
J53 J54 J55


︸ ︷︷ ︸

B22

 y3
y4
y5


︸ ︷︷ ︸

Y2

=

 z3
z4
z5


︸ ︷︷ ︸

Z2

,

the subsidiary preconditioners that operate on the linear systems involving B11 and B22 therefore retain access to
the relevant dof-level blocks. Hence, if we employ the block triangular preconditioner discussed above to (approx-
imately) solve the two linear systems in equation (14), the complete preconditioning operation is described by the
following equations: (

J11 J12
J22

)(
y1
y2

)
=

(
z1
z2

)
︸ ︷︷ ︸

Z1

−
(

J13 J14 J15
J23 J24 J25

)
︸ ︷︷ ︸

B12

 y3
y4
y5


︸ ︷︷ ︸

Y2︸ ︷︷ ︸
Ẑ1 J33 J34 J35

J44 J45
J55

 y3
y4
y5

 =

 z3
z4
z5

 .

Generated by Doxygen

22 oomph-lib's Block Preconditioning Framework

Note that when we wrote the block triangular preconditioner we did not have to be aware of the fact that it may sub-
sequently be used as a subsidiary block preconditioner. The internal data structures implemented in the Block←↩

Preconditioner base class ensure that when we call get_block(0,0,block_matrix) in the sub-
sidiary block preconditioner acting on B22, block_matrix will receive a deep copy of J33, extracted from the
full system matrix. Similarly, a call to get_block_vectors(r,block_r) will extract the three block vectors
r3, r4 and r5 from the full-length vector r, while return_block_vectors(block_z,z) will return the three
solution vectors z3, z4 and z5 to the appropriate entries in the full-length vector z.
The implementation of the preconditioning operations can again be subdivided into two distinct setup() and
preconditioner_solve(...) phases.

• Set up the data structures/lookup tables that map dof types 0 and 1 to block 0 and dof types 2, 3 and 4 to
block 1 [by calling the BlockPreconditioner::block_setup(...) function with arguments that
specify the mapping between "dof types" and "block types" as before].

• Create two instances of the block triangular preconditioner (or any other block preconditioner) and turn them
into the subsidiary preconditioners for the current (master) preconditioner, specifying which dof types in the
master preconditioner the subsidiary block preconditioners are to work with.

• Extract the compound off-diagonal block B12 and create a MatrixVectorProduct operator.

Once the setup() phase has been completed, the solution of the linear system Py = z by the
preconditioner_solve(...) function involves the following steps:

• Solve the linear systems B22 Y2 = Z2 using the subsidiary block preconditioner that works with B22. [The
subsidiary block preconditioner's preconditioner_solve(...) function is given access to the full-
size vectors z and y and extracts/returns Z2 and Y2 directly from/into these.]

• Extract the solution vector Y2 from the just undated full-length vector y, perform the matrix vector product
with B12 and store the result in a temporary vector t.

• Extract the block vector Z1 from the full-length vector z, subtract t from it, and return the result, Ẑ1 =
Z1 −B12Z2 into the appropriate entries into the full-length vector z.

• Solve the linear systems B11 Y1 = Ẑ1 = Z1 −B12Z2 using the subsidiary block preconditioner that works
with B11. [The subsidiary block preconditioner's preconditioner_solve(...) function is given
access to the full-size vectors z and y and extracts/returns Ẑ1 and Y1 directly from/into these; recall that the
relevant entries in z have been over-written in the previous step so that Ẑ1 contains the updated right hand
side.]

1.3.5.2 Implementation as a BlockPreconditioner

The implementation of the preconditioner is completely equivalent to the corresponding block triangular precondi-
tioner considered in the previous example:
//=========start_of_two_plus_three_upper_triangular_with_sub_class=============
/// Upper block triangular with subsidiary block preconditioners
/// for a system with 5 dof types.
//===
template<typename MATRIX>
class TwoPlusThreeUpperTriangularWithOneLevelSubsidiary
: public BlockPreconditioner<MATRIX>

{

public :

/// Constructor.
TwoPlusThreeUpperTriangularWithOneLevelSubsidiary() :
BlockPreconditioner<MATRIX>(),
Off_diagonal_matrix_vector_product_pt(0),
First_subsidiary_preconditioner_pt(0),
Second_subsidiary_preconditioner_pt(0)
{
Multi_poisson_mesh_pt=0;
}

/// Destructor - delete the preconditioner matrices
virtual ~TwoPlusThreeUpperTriangularWithOneLevelSubsidiary()
{
this->clean_up_my_memory();
}

/// Clean up the memory

Generated by Doxygen

1.3 Simple preconditioner examples 23

void clean_up_my_memory();

/// Broken copy constructor
TwoPlusThreeUpperTriangularWithOneLevelSubsidiary
(const TwoPlusThreeUpperTriangularWithOneLevelSubsidiary&)
{
BrokenCopy::broken_copy
("TwoPlusThreeUpperTriangularWithOneLevelSubsidiary");

}

/// Broken assignment operator
void operator=(const

TwoPlusThreeUpperTriangularWithOneLevelSubsidiary&)
{
BrokenCopy::broken_assign(
"TwoPlusThreeUpperTriangularWithOneLevelSubsidiary");

}

/// Apply preconditioner to r
void preconditioner_solve(const DoubleVector &r, DoubleVector &z);

/// Setup the preconditioner
void setup();
// Use the version in the Preconditioner base class for the alternative
// setup function that takes a matrix pointer as an argument.
using Preconditioner::setup;

/// Specify the mesh that contains multi-poisson elements
void set_multi_poisson_mesh(Mesh* multi_poisson_mesh_pt)
{
Multi_poisson_mesh_pt=multi_poisson_mesh_pt;
}

private:

/// Pointer to matrix vector product operators for the off diagonal block
MatrixVectorProduct* Off_diagonal_matrix_vector_product_pt;

/// Pointer to preconditioners/inexact solver
/// for (0,0) block
Preconditioner* First_subsidiary_preconditioner_pt;

/// Pointer to preconditioners/inexact solver
/// for (1,1) block
Preconditioner* Second_subsidiary_preconditioner_pt;

/// Pointer to mesh with preconditionable elements used
/// for classification of dof types.
Mesh* Multi_poisson_mesh_pt;

};

1.3.5.3 The setup() function

As usual we free up any memory and set the pointer to the mesh:
//=======start_of_setup_for_two_plus_three_upper_triangular_with_sub_class====
/// The setup function.
//==
template<typename MATRIX>
void TwoPlusThreeUpperTriangularWithOneLevelSubsidiary<MATRIX>::setup()
{
// clean the memory
this->clean_up_my_memory();

#ifdef PARANOID
if (Multi_poisson_mesh_pt == 0)
{
std::stringstream err;
err « "Please set pointer to mesh using set_multi_poisson_mesh(...).\n";
throw OomphLibError(err.str(),

OOMPH_CURRENT_FUNCTION,
OOMPH_EXCEPTION_LOCATION);

}
#endif

// The preconditioner works with one mesh; set it!
this->set_nmesh(1);
this->set_mesh(0,Multi_poisson_mesh_pt);

We check that the number of dof types is appropriate for this preconditioner:
// number of dof types
unsigned n_dof_types = this->ndof_types();

#ifdef PARANOID
// This preconditioner only works for 5 dof types
if (n_dof_types!=5)
{
std::stringstream tmp;
tmp « "This preconditioner only works for problems with 5 dof types\n"

« "Yours has " « n_dof_types;

Generated by Doxygen

24 oomph-lib's Block Preconditioning Framework

throw OomphLibError(tmp.str(),
OOMPH_CURRENT_FUNCTION,
OOMPH_EXCEPTION_LOCATION);

}
#endif

Next we define the block structure of the preconditioner, using a dof-to-block mapping to combine dofs 0 and 1 into
block 0, and dofs 2, 3 and 4 into block 1:

// Combine "dof blocks" into two compound blocks, one containing dof
// types 0 and 1, the final one dof types 2-4. In general we want:
// dof_to_block_map[dof_type] = block type
Vector<unsigned> dof_to_block_map(n_dof_types);
dof_to_block_map[0]=0;
dof_to_block_map[1]=0;
dof_to_block_map[2]=1;
dof_to_block_map[3]=1;
dof_to_block_map[4]=1;
this->block_setup(dof_to_block_map);

Next we create the block triangular preconditioner used to (approximately) solve linear systems involving the com-
pound "top left" 2x2 block:

// Create the subsidiary block preconditioners.
{
// Block upper triangular block preconditioner for compound
// 2x2 top left block in "big" 5x5 matrix
UpperTriangular<CRDoubleMatrix>* block_prec_pt=
new UpperTriangular<CRDoubleMatrix>;
First_subsidiary_preconditioner_pt=block_prec_pt;

Next we specify the pointer to the mesh that contains the elements that classify the degrees of freedom. We note,
that, strictly speaking this is not necessary since the preconditioner will only be used as a subsidiary preconditioner
– the enumeration of the dof types is always handled by the top-most master preconditioner. One (or more) mesh
pointers must be set for the master preconditioner, and, if compiled in PARANOID mode, oomph-lib will throw
an error if this is not done. Some (but not all!) oomph-lib developers regard it as "good practice" to set the mesh
pointer anyway, so one is less likely to forget...

// Set mesh
block_prec_pt->set_multi_poisson_mesh(Multi_poisson_mesh_pt);

We turn this preconditioner into a subsidiary block preconditioner, specifying the pointer to the current (master)
preconditioner and the mapping between dof types in the present and the subsidiary block preconditioners (here
the identity):

// Turn into a subsidiary preconditioner, declaring which
// of the five dof types in the present (master) preconditioner
// correspond to the dof types in the subsidiary block preconditioner:
// dof_map[dof_block_ID_in_subsdiary] = dof_block_ID_in_master. Also
// pass pointer to present (master) preconditioner.
unsigned n_sub_dof_types=2;
Vector<unsigned> dof_map(n_sub_dof_types);
dof_map[0]=0;
dof_map[1]=1;
block_prec_pt->turn_into_subsidiary_block_preconditioner(this,dof_map);

When calling the subsidiary block preconditioners setup(...) function we pass a pointer to the full matrix:

// Setup: Pass pointer to full-size matrix!
block_prec_pt->setup(this->matrix_pt());
}

The second subsidiary block preconditioner (for the 3x3 "bottom right" compound matrix) is created similarly, though
the mapping between dof-types is now no longer the identity but maps dof types 2, 3 and 4 in the current (master)
preconditioner to dof types 0, 1 and 2 in the subsidiary block preconditioner:

{
// Block upper triangular for 3x3 bottom right block in "big" 5x5 matrix
UpperTriangular<CRDoubleMatrix>* block_prec_pt=
new UpperTriangular<CRDoubleMatrix>;
Second_subsidiary_preconditioner_pt=block_prec_pt;

// Set mesh
block_prec_pt->set_multi_poisson_mesh(Multi_poisson_mesh_pt);

// Turn second_sub into a subsidiary preconditioner, declaring which
// of the five dof types in the present (master) preconditioner
// correspond to the dof types in the subsidiary block preconditioner:
// dof_map[dof_block_ID_in_subsdiary] = dof_block_ID_in_master. Also
// pass pointer to present (master) preconditioner.
unsigned n_sub_dof_types=3;
Vector<unsigned> dof_map(n_sub_dof_types);
dof_map[0]=2;
dof_map[1]=3;
dof_map[2]=4;
block_prec_pt->turn_into_subsidiary_block_preconditioner(this,dof_map);
// Setup: Pass pointer to full-size matrix!
block_prec_pt->setup(this->matrix_pt());
}

Generated by Doxygen

1.3 Simple preconditioner examples 25

The setup of the matrix-vector product with the off-diagonal matrix is unchanged from the previous example:
// Setup the off-diagonal mat vec operator
{
// Get the off-diagonal block: the top-right block in the present
// block preconditioner (which views the system matrix as comprising
// 2x2 blocks).
CRDoubleMatrix block_matrix = this->get_block(0,1);

// Create matrix vector product
Off_diagonal_matrix_vector_product_pt = new MatrixVectorProduct;

// Setup: Final argument indicates block column in the present
// block preconditioner (which views the system matrix as comprising
// 2x2 blocks).
unsigned block_column_index=1;
this->setup_matrix_vector_product(
Off_diagonal_matrix_vector_product_pt,&block_matrix,block_column_index);

}

}

1.3.5.4 The preconditioner_solve() function

As discussed in the theory section, we start by (approximately) solving the system B22Y2 = Z2, using the second
subsidiary block preconditioner which automatically extracts Z2 from the full length vector z and returns the result
Y2 into the appropriate entries of the full length vector y.
//===
/// Preconditioner solve
//===
template<typename MATRIX>
void TwoPlusThreeUpperTriangularWithOneLevelSubsidiary<MATRIX>::
preconditioner_solve(const DoubleVector& z, DoubleVector& y)
{
// Solve "bottom right" (1,1) diagonal block system, using the
// subsidiary block preconditioner that acts on the
// "bottom right" 3x3 sub-system (only!). The subsidiary preconditioner
// will extract the relevant (3x1) "sub-vectors" from the "big" (5x1)
// vector z and treat it as the rhs, r, of P y = z
// where P is 3x3 a block matrix. Once the system is solved,
// the result is automatically put back into the appropriate places
// of the "big" (5x1) vector y:
Second_subsidiary_preconditioner_pt->preconditioner_solve(z,y);

We now extract the block vector Y2 from the full-length vector y,

// Now extract the "bottom" (3x1) block vector from the full-size (5x1)
// solution vector that we’ve just computed -- note that index 1
// refers to the block enumeration in the current preconditioner
// (which has two blocks!)
DoubleVector block_y;
this->get_block_vector(1,y,block_y);

multiply it by B12, using the MatrixVectorProduct operator,
// Evaluate matrix vector product of just-extracted (3x1) solution
// vector with off-diagonal block and store in temporary vector
DoubleVector temp;
Off_diagonal_matrix_vector_product_pt->multiply(block_y,temp);

and subtract the result from Z1 (which we extract from the full length vector z):
// Extract "upper" (2x1) block vector from full-size (5x1) rhs
// vector (as passed into this function)...
DoubleVector block_z;
this->get_block_vector(0,z,block_z);
// ...and subtract matrix vector product computed above
block_z -= temp;

block_z now contains the updated right hand side, Ẑ1, for the linear system to be (approximately) solved by the
first subsidiary block preconditioner. We therefore return Ẑ1 to the appropriate entries into a full length vector of the
same size as right hand side vector z:

// Block solve for first diagonal block. Since the associated subsidiary
// preconditioner is a block preconditioner itself, it will extract
// the required (2x1) block from a "big" (5x1) rhs vector.
// Therefore we first put the actual (2x1) rhs vector block_z into a
// "big" (5x1) vector big_z whose row distribution matches that of the
// "big" right hand side vector, z, that was passed into this function.
DoubleVector big_z(z.distribution_pt());
this->return_block_vector(0,block_z,big_z);

We then pass this vector to first subsidiary preconditioner which updates the appropriate entries in the full-length
solution vector y which can therefore be returned directly by this function:

// Now apply the subsidiary block preconditioner that acts on the
// "upper left" (2x2) sub-system (only!). The subsidiary preconditioner
// will extract the relevant (2x1) block vector from the "big" (5x1)
// vector big_r and treat it as the rhs, z, of its P y = z
// where P is upper left 2x2 block diagonal of the big system.

Generated by Doxygen

26 oomph-lib's Block Preconditioning Framework

// Once the system is solved, the result is automatically put back
// into the appropriate places of the "big" (5x1) vector y which is
// returned by the current function, so no further action is required.
First_subsidiary_preconditioner_pt->preconditioner_solve(big_z,y);

}

1.3.5.5 The clean_up_my_memory() function

As usual, we use this helper function to free up any memory allocated in the setup() function to avoid memory
leaks.
//====start_of_clean_up_for_two_plus_three_upper_triangular_with_sub_class=====
/// The clean up function.
//==
template<typename MATRIX>
void TwoPlusThreeUpperTriangularWithOneLevelSubsidiary<MATRIX>::
clean_up_my_memory()
{
// Delete off-diagonal matrix vector product
if(Off_diagonal_matrix_vector_product_pt!= 0)
{
delete Off_diagonal_matrix_vector_product_pt;
Off_diagonal_matrix_vector_product_pt = 0;
}
//Clean up subsidiary preconditioners.
if(First_subsidiary_preconditioner_pt!=0)
{
delete First_subsidiary_preconditioner_pt;
First_subsidiary_preconditioner_pt = 0;
}
if(Second_subsidiary_preconditioner_pt!=0)
{
delete Second_subsidiary_preconditioner_pt;
Second_subsidiary_preconditioner_pt = 0;
}

} // End of clean_up_my_memory function.

1.3.6 Replacing/modifying blocks

NEW FEATURES: How to replace/modify matrix blocks

1.3.6.1 Theory

So far, we have demonstrated how to extract matrix blocks from the full-sized system matrix (typically the Jacobian
matrix used in Newton's method) and how to apply a preconditioner via operations involving these blocks. Many
preconditioners do not operate directly with the matrix blocks themselves, but on matrices that are derived from
them. For instance, oomph-lib's Schur complement Navier-Stokes preconditioner operates
on an (approximate) Schur complement; augmentation preconditioners involve operations on matrices that are ob-
tained by the addition of a diagonal matrix to some of the matrix blocks; etc. Within a given preconditioner such
derived matrices are typically pre-computed by the preconditioner's setup() function and then stored as private
member data which makes them available to the preconditioner_solve() function. Unfortunately, this ap-
proach does not work if the modified block is to be used in a subsidiary block preconditioner because, as discussed
in the previous example, by default the subsidiary block preconditioner will extract its block matrices directly from
the full-size system matrix and will therefore ignore any (local) modifications made by its master preconditioner(s).
What is therefore required is a method that indicates to the block preconditioning framework that a given sub-block
is not to be extracted from the full system matrix but to be represented by suitable replacement matrix.
We demonstrate this methodology by re-visiting the preconditioner considered in the previous example, namely

Pprevious =


J11 J12 J13 J14 J15
J21 J22 J13 J14 J15

J33 J34 J35
J43 J44 J45
J53 J54 J55

 . (15)

However, here we want to modify the off-diagonal blocks by "replacing" each block Jij (for i ̸= j) by a "replacement
matrix" Rij so that the preconditioner becomes

P =


J11 R12 R13 R14 R15

R21 J22 R23 R24 R25

J33 R34 R35

R43 J44 R45

R53 R54 J55

 =

(
B11 B12

B22

)
. (16)

Generated by Doxygen

../../../preconditioners/lsc_navier_stokes/html/index.html

1.3 Simple preconditioner examples 27

The application of this preconditioner (i.e. the solution of the linear system Py = z for y) still requires the solution
of the two smaller linear systems

(
J11 R12

R21 J22

)
︸ ︷︷ ︸

B11

(
y1
y2

)
=

(
z1
z2

)
−
(

R13 R14 R15

R23 R24 R25

)
︸ ︷︷ ︸

B12

 z3
z4
z5


(17) J33 R34 R35

R43 J44 R45

R53 R54 J55


︸ ︷︷ ︸

B22

 y3
y4
y5

 =

 z3
z4
z5



where we have again assumed that the two vectors y and z are re-ordered into `‘block vectors’' in the same way
as the vectors δx and r in "the original linear system" (3) are re-ordered into the `‘block vectors’' in (17). We wish
to continue to solve the linear systems involving the compound matrices B11 and B22 (which involve "replaced"
blocks) by two subsidiary block preconditioners (which operate on 3x3 and 2x2 dof blocks, respectively).
In the specific example below we replace all of the diagonal matrices by suitably sized zero matrices, so that the
actual preconditioning operation is defined by the following linear systems

(
J11

J22

)
︸ ︷︷ ︸

B11

(
y1
y2

)
=

(
z1
z2

)
−
()
︸ ︷︷ ︸

B12

 z3
z4
z5


 J33

J44
J55


︸ ︷︷ ︸

B22

 y3
y4
y5

 =

 z3
z4
z5



which, in effect, turns the preconditioner into the block-diagonal preconditioner considered at the very beginning of
this tutorial.

1.3.6.2 Implementation as a BlockPreconditioner

The implementation of the preconditioner is completely equivalent to the preconditioner considered in the pre-
vious example. The only additional feature is the provision a matrix of pointers to the replacement matrices,
Replacement_matrix_pt.
//=============start_of_two_plus_three_upper_triangular_with_replace_class=====
/// Block diagonal preconditioner for system with 5 dof types
/// assembled into a 2x2 block system, with (0,0) block containing
/// the first two dof types, the (1,1) block the remaining dof types.
/// The blocks are solved by upper block triangular preconditioners.
/// However, the overall system is modified by replacing all off-diagonal
/// blocks by replacement matrices (zero matrices, so the preconditioner
/// again behaves like a 5x5 block diagonal preconditioner).
//===
template<typename MATRIX>
class TwoPlusThreeUpperTriangularWithReplace :
public BlockPreconditioner<MATRIX>

{

public :

/// Constructor for TwoPlusThreeUpperTriangularWithReplace
TwoPlusThreeUpperTriangularWithReplace() :
BlockPreconditioner<MATRIX>(),
First_subsidiary_preconditioner_pt(0),
Second_subsidiary_preconditioner_pt(0),
Off_diagonal_matrix_vector_product_pt(0)
{
Multi_poisson_mesh_pt=0;
} // end_of_constructor

/// Destructor clean up memory
~TwoPlusThreeUpperTriangularWithReplace()
{
this->clean_up_my_memory();
}

/// Clean up the memory

Generated by Doxygen

28 oomph-lib's Block Preconditioning Framework

virtual void clean_up_my_memory();

/// Broken copy constructor
TwoPlusThreeUpperTriangularWithReplace
(const TwoPlusThreeUpperTriangularWithReplace&)
{
BrokenCopy::
broken_copy("TwoPlusThreeUpperTriangularWithReplace");

}

/// Broken assignment operator
void operator=(const TwoPlusThreeUpperTriangularWithReplace&)
{
BrokenCopy::
broken_assign("TwoPlusThreeUpperTriangularWithReplace");

}

/// Apply preconditioner to r, i.e. return z such that P z = r
void preconditioner_solve(const DoubleVector &r, DoubleVector &z);

/// Setup the preconditioner
void setup();

/// Specify the mesh that contains multi-poisson elements
void set_multi_poisson_mesh(Mesh* multi_poisson_mesh_pt)
{
Multi_poisson_mesh_pt=multi_poisson_mesh_pt;
}
private :

/// Pointer to preconditioners/inexact solver
/// for compound (0,0) block
Preconditioner* First_subsidiary_preconditioner_pt;

/// Pointer to preconditioners/inexact solver
/// for compound (1,1) block
Preconditioner* Second_subsidiary_preconditioner_pt;

/// Matrix vector product operator with the compound
/// (0,1) off diagonal block.
MatrixVectorProduct* Off_diagonal_matrix_vector_product_pt;
// Matrix of pointers to replacement matrix blocks
DenseMatrix<CRDoubleMatrix*> Replacement_matrix_pt;

/// Pointer to mesh with preconditionable elements used
/// for classification of dof types.
Mesh* Multi_poisson_mesh_pt;

};

1.3.6.3 The setup() function

As usual, we start by cleaning up any memory using a call to a clean_up_my_memory() function, and set the
pointer to the mesh
//==start_of_setup_for_two_plus_three_upper_triangular_with_replace===========
/// The setup function.
//==
template<typename MATRIX>
void TwoPlusThreeUpperTriangularWithReplace<MATRIX>::setup()
{
// Clean up memory.
this->clean_up_my_memory();

#ifdef PARANOID
if (Multi_poisson_mesh_pt == 0)
{
std::stringstream err;
err « "Please set pointer to mesh using set_multi_poisson_mesh(...).\n";
throw OomphLibError(err.str(),

OOMPH_CURRENT_FUNCTION,
OOMPH_EXCEPTION_LOCATION);

}
#endif

// The preconditioner works with one mesh; set it!
this->set_nmesh(1);
this->set_mesh(0,Multi_poisson_mesh_pt);

Next we check that the number of dof types is 5, as the preconditioner is designed to only work for that number.
// How many dof types do we have?
const unsigned n_dof_types = this->ndof_types();

#ifdef PARANOID
// This preconditioner only works for 5 dof types
if (n_dof_types!=5)
{
std::stringstream tmp;

Generated by Doxygen

1.3 Simple preconditioner examples 29

tmp « "This preconditioner only works for problems with 5 dof types\n"
« "Yours has " « n_dof_types;

throw OomphLibError(tmp.str(),
OOMPH_CURRENT_FUNCTION,
OOMPH_EXCEPTION_LOCATION);

}
#endif

The block setup follows exactly the same pattern as in the previous example: Dof types 0 and 1 are combined into
compound block 0, while dof types 2, 3 and 4 are combined into compound block 1.
On return from the block setup function we should therefore have two block types:

// Call block setup with the Vector [0,0,1,1,1] to:
// Merge DOF types 0 and 1 into block type 0
// Merge DOF types 2, 3, and 4 into block type 1.
Vector<unsigned> dof_to_block_map(n_dof_types,0);
dof_to_block_map[0] = 0;
dof_to_block_map[1] = 0;
dof_to_block_map[2] = 1;
dof_to_block_map[3] = 1;
dof_to_block_map[4] = 1;
this->block_setup(dof_to_block_map);

#ifdef PARANOID
// We should now have two block types -- do we?
const unsigned nblocks = this->nblock_types();
if (nblocks!=2)
{
std::stringstream tmp;
tmp « "Expected number of block types is 2.\n"

« "Yours has " « nblocks « ".\n"
« "Perhaps your argument to block_setup(...) is not correct.\n";

throw OomphLibError(tmp.str(),
OOMPH_CURRENT_FUNCTION,
OOMPH_EXCEPTION_LOCATION);

}
#endif

Now we perform the replacement of the off-diagonal dof blocks. (Note that there are still five of these. Dof-blocks
and compound blocks are not the same – if you get them confused you will get into trouble!). We allocate storage
for the pointers to the replacement matrices and loop over the off-diagonal blocks:

// Now replace all the off-diagonal DOF blocks.
// Storage for the replacement DOF blocks
Replacement_matrix_pt.resize(n_dof_types,n_dof_types,0);
// Set off-diagonal DOF blocks to zero, loop over the number of DOF blocks.
// NOTE: There are two (compound) blocks, but the replacement functionality
// works with DOF blocks.
for(unsigned i=0;i<n_dof_types;i++)
{
for(unsigned j=0;j<n_dof_types;j++)
{
if(i!=j)
{

Given that the replacement matrices are zero matrices, we could simply create them without ever looking at the
original blocks. Sadly the creation of zero matrices turns out to be slightly more painful than one would wish
because they have to be created as a (possibly distributed) CRDoubleMatrix. The relevant code is contained
in the source code but we won't discuss it here since the more common situation is one where we actually want to
modify the already existing entries of an already existing block matrix. Therefore we simply extract the matrix and
set its initially nonzero entries to zero (admittedly a bit silly – we now have a sparse matrix full of zeroes, but it's just
a demonstration!):

// Modify matrix
bool modify_existing_matrix=true;
if (modify_existing_matrix)
{
// Get the dof-block and make a deep copy of it
Replacement_matrix_pt(i,j)=new CRDoubleMatrix;
this->get_dof_level_block(i,j,(*Replacement_matrix_pt(i,j)));

// Set all its entries to zero
unsigned nnz=Replacement_matrix_pt(i,j)->nnz();
for (unsigned k=0;k<nnz;k++)
{
Replacement_matrix_pt(i,j)->value()[k]=0.0;

}
} // done -- quite wasteful, we’re actually storing lots of zeroes, but
// this is just an example!

We then pass the pointer to the replacement dof block to the block preconditioner
// Replace (i,j)-th dof block
this->set_replacement_dof_block(i,j,Replacement_matrix_pt(i,j));

}
}// end for loop of j

}// end for loop of i

The rest of the setup works exactly as in the previous example, only this time, the subsidiary preconditioners and

Generated by Doxygen

30 oomph-lib's Block Preconditioning Framework

the matrix vector products will work with the replacement dof blocks that we've just defined.
We create and set up the first subsidiary block preconditioner which operates on our dof types 0 and 1 (and treats
them as its own dof types 0 and 1):

// First subsidiary precond is a block triangular preconditioner
{
UpperTriangular<CRDoubleMatrix>* block_prec_pt=
new UpperTriangular<CRDoubleMatrix>;
First_subsidiary_preconditioner_pt=block_prec_pt;

// Set mesh
block_prec_pt->set_multi_poisson_mesh(Multi_poisson_mesh_pt);

// Turn it into a subsidiary preconditioner, declaring which
// of the five dof types in the present (master) preconditioner
// correspond to the dof types in the subsidiary block preconditioner
unsigned n_sub_dof_types=2;
Vector<unsigned> dof_map(n_sub_dof_types);
dof_map[0]=0;
dof_map[1]=1;
block_prec_pt->turn_into_subsidiary_block_preconditioner(this,dof_map);
// Perform setup. Note that because the subsidiary
// preconditioner is a block preconditioner itself it is given
// the pointer to the "full" matrix
block_prec_pt->setup(this->matrix_pt());
}

The second subsidiary block preconditioner which operates on our dof types 2, 3 and 4 (and treats them as its own
dof types 0, 1 and 2):

// Second subsidiary precond is a block triangular preconditioner
{
UpperTriangular<CRDoubleMatrix>* block_prec_pt=
new UpperTriangular<CRDoubleMatrix>;
Second_subsidiary_preconditioner_pt=block_prec_pt;

// Set mesh
block_prec_pt->set_multi_poisson_mesh(Multi_poisson_mesh_pt);

// Turn it into a subsidiary preconditioner, declaring which
// of the five dof types in the present (master) preconditioner
// correspond to the dof types in the subsidiary block preconditioner
unsigned n_sub_dof_types=3;
Vector<unsigned> dof_map(n_sub_dof_types);
dof_map[0]=2;
dof_map[1]=3;
dof_map[2]=4;
block_prec_pt->turn_into_subsidiary_block_preconditioner(this,dof_map);

// Perform setup. Note that because the subsidiary
// preconditioner is a block preconditioner itself it is given
// the pointer to the "full" matrix
block_prec_pt->setup(this->matrix_pt());
}

Finally, we create the matrix vector product operator:
// Next setup the off diagonal mat vec operators:
{
// Get the block
CRDoubleMatrix block_matrix = this->get_block(0,1);

// Create matrix vector product operator
Off_diagonal_matrix_vector_product_pt = new MatrixVectorProduct;

// Setup: Final argument indicates block column in the present
// block preconditioner (which views the system matrix as comprising
// 2x2 blocks).
unsigned block_column_index=1;
this->setup_matrix_vector_product(
Off_diagonal_matrix_vector_product_pt,&block_matrix,block_column_index);
// Extracted block can now go out of scope since the matrix vector
// product retains whatever information it needs
}

}

1.3.6.4 The preconditioner_solve() function

The preconditioner_solve() function is completely identical to the one used in the previous preconditioner,
so we omit the code listing – the subsidiary preconditioners and the matrix vector product operator work in the same
way but now simply operate on the replacement dof blocks where they have been set.

1.3.6.5 The clean_up_my_memory() function

Memory is cleaned up as before, so we omit the code listing.

Generated by Doxygen

1.3 Simple preconditioner examples 31

1.3.7 Coarsening/combining dof types

NEW FEATURES: How to coarsen/combine dof types for use by subsidiary block preconditioners.

1.3.7.1 Theory

In the examples presented so far we have demonstrated how to combine various dof-blocks into compound blocks
in order to facilitate the application of certain preconditioning operations. For instance, in many of the previous
examples we performed a matrix vector product using the compound matrix B12 that was (formally) formed by the
concatenation of the 2x3 "top right" off-diagonal dof blocks in the full-sized system.
We also showed how subsidiary block preconditioners which operate on a specific number of dof blocks can be
instructed to operate on selected dof types from the full-sized system. Our standard example for this was a 2D
Navier-Stokes preconditioner which operates on three dof types (two fluid velocities and one pressure) and is used
as a subsidiary block preconditioner in an FSI problem that also involves additional dofs associated with the solid
mechanics (e.g. the two solid displacement components). This was done by informing the subsidiary preconditioner
which of the dof types in the full-sized system to regard as "its own" when calling its turn_into_subsidiary←↩

_block_preconditioner(...) function. This implies that the subsidiary block preconditioner remains un-
aware of any compound blocks that may have been formed in its master preconditioner. The functionality presented
so far only allows us to associate dof-blocks in the master preconditioner with dof blocks in the subsidiary block
preconditioner. It is therefore not possible (without further functionality which we explain in this example) to use a
subsidiary block preconditioner if the dof-types in the master preconditioner are "too fine-grained". This arises, for
instance, in Navier-Stokes problems where the master preconditioner sub-divides the two components of the fluid
velocity into degrees of freedom on the domain boundary and those in the interior. It is then necessary to make the
subsidiary preconditioner act on the combined dof types, a process that we describe as "coarsening".
We illustrate the procedure by returning, yet again, to our 5x5 block linear system that we wish to precondition with

Pprevious =


J11 J12 J13 J14 J15
J21 J22 J13 J14 J15

J33 J34 J35
J43 J44 J45
J53 J54 J55

 =

(
B11 B12

B22

)
. (18)

However, now we wish to solve the two linear systems involving the compound matrices B11 and B22 with a 2x2
upper triangular subsidiary block preconditioner. To make this possible, we "coarsen" the dof types such that the
subsidiary block preconditioner acting on B22 treats the global dof types 3 and 4 as a single dof type so that the
block structure can be viewed as

P =


J11 J12
J21 J22

J13 J14 J15
J23 J24 J25

J33 J34 J35
J43 J44 J45
J53 J54 J55

 =

(
B11 B12

B22

)
. (19)

If we now use a 2x2 upper triangular block preconditioner to (approximately) solve the linear systems involving the
diagonal blocks B11 and B22 the preconditioner is given (mathematically) by

P =


J11 J12 J13 J14 J15

J22 J23 J24 J25
J33 J34 J35
J34 J44 J45

J55

 .

[Note that, In the actual implementation discussed below, we also set the off diagonal dof-blocks to zero, using the
replacement methodology discussed in the previous example. The preconditioner therefore becomes mathemati-
cally equivalent to the 5x5 block diagonal preconditioner discussed at the very beginning of this tutorial.]

1.3.7.2 Implementation as a BlockPreconditioner

The implementation of the preconditioner is completely equivalent to the preconditioner considered in the previous
examples:
//==================start_of_coarse_two_plus_two_plus_one_class================

Generated by Doxygen

32 oomph-lib's Block Preconditioning Framework

/// Block diagonal preconditioner for system with 5 dof types
/// assembled into a 2x2 block system, with the (0,0) block containing
/// the first two dof types, the (1,1) block containing the three remaining
/// ones.
//===
template<typename MATRIX>
class CoarseTwoPlusTwoPlusOne :
public BlockPreconditioner<MATRIX>

{

public :

/// Constructor for CoarseTwoPlusTwoPlusOne
CoarseTwoPlusTwoPlusOne() :
BlockPreconditioner<MATRIX>(),
First_subsidiary_preconditioner_pt(0),
Second_subsidiary_preconditioner_pt(0),
Off_diagonal_matrix_vector_product_pt(0)
{
Multi_poisson_mesh_pt=0;

} // end_of_constructor

/// Destructor - delete the diagonal solvers (subsidiary preconditioners)
~CoarseTwoPlusTwoPlusOne()
{
this->clean_up_my_memory();
}

/// clean up the memory
virtual void clean_up_my_memory();

/// Broken copy constructor
CoarseTwoPlusTwoPlusOne
(const CoarseTwoPlusTwoPlusOne&)
{
BrokenCopy::broken_copy(
"CoarseTwoPlusTwoPlusOne");

}

/// Broken assignment operator
void operator=(const

CoarseTwoPlusTwoPlusOne&)
{
BrokenCopy::broken_assign(
"CoarseTwoPlusTwoPlusOne");

}

/// Apply preconditioner to r, i.e. return z such that P z = r
void preconditioner_solve(const DoubleVector &r, DoubleVector &z);

/// Setup the preconditioner
virtual void setup();

/// Specify the mesh that contains multi-poisson elements
void set_multi_poisson_mesh(Mesh* multi_poisson_mesh_pt)
{
Multi_poisson_mesh_pt=multi_poisson_mesh_pt;
}

private :

/// Pointer to preconditioners/inexact solver
/// for (0,0) block
Preconditioner* First_subsidiary_preconditioner_pt;

/// Pointer to preconditioners/inexact solver
/// for (1,1) block
Preconditioner* Second_subsidiary_preconditioner_pt;
// Matrix of pointers to replacement matrix blocks
DenseMatrix<CRDoubleMatrix*> Replacement_matrix_pt;

/// Matrix vector product operator
MatrixVectorProduct* Off_diagonal_matrix_vector_product_pt;

/// Pointer to mesh with preconditionable elements used
/// for classification of dof types.
Mesh* Multi_poisson_mesh_pt;

};

1.3.7.3 The setup() function

As usual we clean up any previously allocated memory and set the pointer to the mesh:
//===============start_of_setup_for_coarse_two_plus_two_plus_one=============
/// The setup function.
//===

Generated by Doxygen

1.3 Simple preconditioner examples 33

template<typename MATRIX>
void CoarseTwoPlusTwoPlusOne<MATRIX>::setup()
{
// Clean up memory
this->clean_up_my_memory();

#ifdef PARANOID
if (Multi_poisson_mesh_pt == 0)
{
std::stringstream err;
err « "Please set pointer to mesh using set_multi_poisson_mesh(...).\n";
throw OomphLibError(err.str(),

OOMPH_CURRENT_FUNCTION,
OOMPH_EXCEPTION_LOCATION);

}
#endif

// The preconditioner works with one mesh; set it!
this->set_nmesh(1);
this->set_mesh(0,Multi_poisson_mesh_pt);

Next we check that the number of degrees of freedom is 5, as the preconditioner is designed to only work for that
number.

// This preconditioner only works for 5 dof types
unsigned n_dof_types = this->ndof_types();

#ifdef PARANOID
if (n_dof_types!=5)
{
std::stringstream tmp;
tmp « "This preconditioner only works for problems with 5 dof types\n"

« "Yours has " « n_dof_types;
throw OomphLibError(tmp.str(),

OOMPH_CURRENT_FUNCTION,
OOMPH_EXCEPTION_LOCATION);

}
#endif

The block setup follows exactly the same pattern as in the previous examples: Dof types 0 and 1 are combined into
compound block 0, while dof types 2, 3 and 4 are combined into compound block 1.

// Call block setup with the Vector [0,0,1,1,1] to:
// Merge DOF types 0 and 1 into block type 0.
// Merge DOF types 2, 3 and 4 into block type 1.
Vector<unsigned> dof_to_block_map(n_dof_types,0);
dof_to_block_map[0] = 0;
dof_to_block_map[1] = 0;
dof_to_block_map[2] = 1;
dof_to_block_map[3] = 1;
dof_to_block_map[4] = 1;
this->block_setup(dof_to_block_map);

[We omit the code listing the replacement of the off-diagonal dof blocks with zero matrices since it is identical to
what we already discussed in the previous example.]
Next we create the two subsidiary preconditioners that (approximately) solve the linear systems involving the diag-
onal blocks B11 and B22. The first subsidiary preconditioner is a standard upper triangular block preconditioner
which acts on the compound block formed by dof types 0 and 1:

// Create the subsidiary preconditioners
//--------------------------------------
{
// First subsidiary precond is a block diagonal preconditioner itself.
UpperTriangular<CRDoubleMatrix>* block_prec_pt=
new UpperTriangular<CRDoubleMatrix>;
First_subsidiary_preconditioner_pt=block_prec_pt;
// Set mesh
block_prec_pt->set_multi_poisson_mesh(Multi_poisson_mesh_pt);

// Turn first_sub into a subsidiary preconditioner, declaring which
// of the five dof types in the present (master) preconditioner
// correspond to the dof types in the subsidiary block preconditioner
const unsigned n_sub_dof_types=2;
Vector<unsigned> dof_map(n_sub_dof_types);
dof_map[0]=0;
dof_map[1]=1;
block_prec_pt->turn_into_subsidiary_block_preconditioner(this,dof_map);
// Perform setup. Note that because the subsidiary
// preconditioner is a block preconditioner itself it is given
// the pointer to the "full" matrix
block_prec_pt->setup(this->matrix_pt());
}

The second subsidiary preconditioner is more interesting. It's a block preconditioner that only operates on a 2x2
block system, yet we want to use it to solve the linear system involving the compound block formed the three dof
types 2, 3 and 4. To do this we wish to combine the dof blocks associated with dof types 2 and 3 into a single block.
We start by setting the mesh pointer and by setting up the usual mapping that identifies the dof types (in the current
preconditioner) that we wish the subsidiary preconditioner to act on.

// Second subsidiary preconditioner is also a block preconditioner

Generated by Doxygen

34 oomph-lib's Block Preconditioning Framework

{
SimpleTwoDofOnly<CRDoubleMatrix>* block_prec_pt=
new SimpleTwoDofOnly<CRDoubleMatrix>;
Second_subsidiary_preconditioner_pt=block_prec_pt;

// Set mesh
block_prec_pt->set_multi_poisson_mesh(Multi_poisson_mesh_pt);

// This is the usual mapping between the subsidiary and master dof types.
Vector<unsigned> dof_map(3);
dof_map[0]=2;
dof_map[1]=3;
dof_map[2]=4;

To combine/coarsen dof types 2 and 3 (in the current preconditioner) into a single dof type for the subsidiary
preconditioner we create a vector of vectors, doftype_coarsening whose entries are to be interpreted as
doftype_coarsening[coarsened_dof_type][i]=dof_type
where i ranges from 0 to the number of dof types (minus one, because of the zero-based indexing...) in the
enumeration of the subsidiary preconditioner that are to be combined/coarsened into dof type coarsened_←↩

dof_type:
// The subsidiary block preconditioner SimpleTwoDofOnly accepts only two
// dof types. We therefore have to "coarsen" the 3 dof types into two
// by specifying the vector of vectors doftype_coarsening whose
// entries are to be interpreted as
//
// doftype_coarsening[coarsened_dof_type][i]=dof_type
//
// where i ranges from 0 to the number of dof types (minus one, because
// of the zero-based indexing...) that are to be
// combined/coarsened into dof type dof_type_in_coarsed_block_preconditioner
// Number of dof types the subsidiary block preconditioner expects.
const unsigned n_sub_dof_types=2;
Vector<Vector<unsigned> > doftype_coarsening(n_sub_dof_types);

// Subsidiary dof type 0 contains 2 dof types.
doftype_coarsening[0].resize(2);
// Coarsen subsidiary dof types 0 and 1 into subsidiary dof type 0.
doftype_coarsening[0][0]=0;
doftype_coarsening[0][1]=1;

// Subsidiary dof type 1 contains 1 dof types.
doftype_coarsening[1].resize(1);

// Subsidiary Dof type 1 contains subsidiary dof type 2.
doftype_coarsening[1][0]=2;

We pass both lookup schemes to the function that turns the preconditioner into a subsidiary block preconditioner
and then call its own setup function, as usual.

// Turn into subdiary preconditioner
block_prec_pt->
turn_into_subsidiary_block_preconditioner(this,dof_map,

doftype_coarsening);
// Perform setup. Note that because the subsidiary
// preconditioner is a block preconditioner itself it is given
// the pointer to the "full" matrix
block_prec_pt->setup(this->matrix_pt());
}

Finally, we set up the of diagonal matrix-vector product which acts on the compound (0,1) block (formed from dof
types {0,1}x{2,3,4}) in the current preconditioner.

// Set up off diagonal matrix vector product
{
// Get the off diagonal block.
CRDoubleMatrix block_matrix = this->get_block(0,1);

// Create matrix vector product operator
Off_diagonal_matrix_vector_product_pt = new MatrixVectorProduct;

// Setup: Final argument indicates block column in the present
// block preconditioner (which views the system matrix as comprising
// 2x2 blocks).
unsigned block_column_index=1;
this->setup_matrix_vector_product(
Off_diagonal_matrix_vector_product_pt,&block_matrix,block_column_index);
// extracted block can now go out of scope; the matrix vector product
// retains its own (deep) copy.
}

}// End of setup

Generated by Doxygen

1.3 Simple preconditioner examples 35

1.3.7.4 The preconditioner_solve() function

The preconditioner_solve() function is completely identical to the one used in the previous example, so
we omit the code listing.

1.3.7.5 The clean_up_my_memory() function

Memory is cleaned up as before, so we omit the code listing.

1.3.8 Using multiple meshes – explained for a genuine fluid-structure interaction
problem

NEW FEATURES: How to use multiple meshes

1.3.8.1 Theory

Finally, we demonstrate the use of multiple meshes by discussing a simple implementation of the FSI precondi-
tioner described in the FSI Preconditioner Tutorial. We refer to the tutorial discussing the FSI
channel with leaflet problem for the overall problem setup.
FSI problems involve fluid (velocities and pressures from the Navier-Stokes equations) and solid (the nodal positions
in the solid domain) degrees of freedom (dofs). We begin by reordering the linear system to group together the two
types of dof [

F Cfs

Csf S

] [
δf
δs

]
= −

[
rf
rs

]
,

where f and s denote the fluid and solid dofs, F is the Navier-Stokes Jacobian (representing the derivatives of the
discretised fluid equations with respect to the fluid dofs), S is the solid Jacobian, and the blocks Cfs and Csf arise
from the interaction between fluid and solid equations.
The Navier Stokes Jacobian F has its own block structure. Decomposing the fluid dofs into velocity and pressure
dofs so that

f =

[
u
p

]
,

we obtain the well known saddle-point structure of F

F =

[
A BT

B

]
,

where A is the momentum block, BT the discrete gradient operator, and B the discrete divergence operator (see
Navier Stokes Preconditioner Tutorial).
This FSI preconditioner takes the form of a block triangular preconditioner. Here we only consider the lower block
triangular version

PFSI =

[
F
Csf S

]
obtained by omitting the Cfs block from the Jacobian.
The application of the preconditioner requires the solution of the linear system[

F
Csf S

] [
zf
zs

]
=

[
yf

ys

]
.

However, for preconditioning purposes this system does not have to be solved exactly. We therefore replace the
solution of the linear systems involving the diagonal blocks (representing the single-physics fluid and solid Jacobians
F and S) by existing preconditioners (interpreted as inexact solvers). Formally, we write this as[

F̃

Csf S̃

] [
zf
zs

]
=

[
yf

ys

]
. (20)

where F̃ is the fluid preconditioner and S̃ the solid preconditioner, both used as subsidiary preconditioners.
The application of the preconditioner can be accomplished in four distinct steps:

Generated by Doxygen

../../../preconditioners/fsi/html/index.html
../../../interaction/fsi_channel_with_leaflet/html/index.html
../../../interaction/fsi_channel_with_leaflet/html/index.html
../../../preconditioners/lsc_navier_stokes/html/index.html
../../../preconditioners/lsc_navier_stokes/html/index.html

36 oomph-lib's Block Preconditioning Framework

1. Apply the fluid preconditioner F̃ to the fluid dofs of the RHS vector yf and store the result in the fluid solution
zf = F̃−1yf .

2. Multiply the fluid-solid coupling matrix Csf with the fluid solution zf and store the result in the temporary
vector w = Csfzf .

3. Subtract w from the solid dofs of the RHS vector ys and store the result in the temporary w to complete the
action of the Csf matrix vector product, w = ys −w .

4. Apply the solid preconditioner S̃ to the temporary w to compute the solid solution zs = S̃−1w .

This is, of course, extremely similar to the methodology explained in the section Using subsidiary block preconditioners,
the main difference being that the fluid and solid dofs are classified by two different elements. In the two-dimensional
FSI channel with leaflet problem these are:

• The fluid elements are of type RefineableQTaylorHoodElement<2>. These elements have three
types of dof; x-velocity dofs are labelled 0, y-velocity dofs are labelled 1 and the pressure dofs are labelled
2.

• The solid elements are of type FSIHermiteBeamElement.
They have one type of dof (the nodal position) labelled 0.

When classifying the dofs we specify the elements via two separate meshes, the first one containing the pointers to
the fluid elements, the second one the pointers to the solid elements. This means that in the global enumeration of
the dof types the fluid dofs appear before the solid dofs.

1.3.8.2 The Implementation of the FSI Preconditioner

We implement the FSI preconditioner in the class SimpleFSIPreconditioner. This class inherits from the
base class BlockPreconditioner which provides the generic functionality required for common block pre-
conditioning operations.
The overall structure of the class is similar to that of the preconditioners considered before, the main difference
being that we now store pointers to two meshes.
//=start_of_simple_fsi_preconditioner==
/// Simple FSI preconditioner. A block uppper triangular preconditioner
/// for the 2x2 FSI block system -- DOFs are decomposed into fluid DOFs and
/// solid DOFs. The fluid subisidiary system is solved with the
/// Navier Stokes Preconditioner and the solid subsidiary system with the
//===
template<typename MATRIX>

class SimpleFSIPreconditioner
: public virtual BlockPreconditioner<MATRIX>

{

public :

/// Constructor for SimpleFSIPreconditioner
SimpleFSIPreconditioner(Problem* problem_pt)
: BlockPreconditioner<MATRIX>(), Navier_stokes_preconditioner_pt(0),

Solid_preconditioner_pt(0), Fluid_solid_coupling_matvec_pt(0),
Navier_stokes_mesh_pt(0), Solid_mesh_pt(0)

{
// Create the Navier Stokes Schur Complement preconditioner
Navier_stokes_preconditioner_pt =
new NavierStokesSchurComplementPreconditioner(problem_pt);

// Create the Solid preconditioner
Solid_preconditioner_pt = new SuperLUPreconditioner;
// Create the matrix-vector product operator
Fluid_solid_coupling_matvec_pt = new MatrixVectorProduct;
}// end_of_constructor

/// Destructor: Clean up.
~SimpleFSIPreconditioner()
{
//Delete the Navier-Stokes preconditioner
delete Navier_stokes_preconditioner_pt; Navier_stokes_preconditioner_pt = 0;

//Delete the solid preconditioner
delete Solid_preconditioner_pt; Solid_preconditioner_pt = 0;

// Delete the matrix vector product operator

Generated by Doxygen

../../../interaction/fsi_channel_with_leaflet/html/index.html

1.3 Simple preconditioner examples 37

delete Fluid_solid_coupling_matvec_pt; Fluid_solid_coupling_matvec_pt = 0;
}

/// Broken copy constructor
SimpleFSIPreconditioner(const SimpleFSIPreconditioner&)
{
BrokenCopy::broken_copy("SimpleFSIPreconditioner");
}

/// Access function to mesh containing the block-preconditionable
/// Navier-Stokes elements.
void set_navier_stokes_mesh(Mesh* mesh_pt)
{
Navier_stokes_mesh_pt = mesh_pt;
}

/// Access function to mesh containing the block-preconditionable
/// FSI solid elements.
void set_solid_mesh(Mesh* mesh_pt)
{
Solid_mesh_pt = mesh_pt;
}

/// Setup the preconditioner
void setup();

/// Apply preconditioner to r
void preconditioner_solve(const DoubleVector &r,

DoubleVector &z);
private:

/// Pointer the Navier Stokes preconditioner.
NavierStokesSchurComplementPreconditioner* Navier_stokes_preconditioner_pt;

/// Pointer to the solid preconditioner.
Preconditioner* Solid_preconditioner_pt;

/// Pointer to the fluid onto solid matrix vector product.
MatrixVectorProduct* Fluid_solid_coupling_matvec_pt;

/// Pointer to the navier stokes mesh.
Mesh* Navier_stokes_mesh_pt;

/// Pointer to the solid mesh.
Mesh* Solid_mesh_pt;
};

1.3.8.3 Preconditioner Setup

We start by setting up the meshes, choosing the fluid mesh to be mesh 0 and the solid mesh to be mesh 1. The
preconditioner therefore has four dof types enumerated in mesh order:

• 0 fluid x velocity (dof type 0 in mesh 0)

• 1 fluid y velocity (dof type 1 in mesh 0)

• 2 fluid pressure (dof type 2 in mesh 0)

• 3 solid (dof type 0 in mesh 1)

//=start_of_setup===
/// Setup the preconditioner.
//==
template<typename MATRIX>
void SimpleFSIPreconditioner<MATRIX>::setup()
{
// setup the meshes for BlockPreconditioner and get the number of types of
// DOF assoicated with each Mesh.
// Mesh 0 is the fluid mesh, and hence DOFs 0 to n_fluid_dof_type-1
// are the fluid DOFs. Mesh 1 is the solid mesh and therefore DOFs
// n_fluid_dof_type to n_total_dof_type-1 are solid DOFs
// set the mesh pointers
this->set_nmesh(2);
this->set_mesh(0,Navier_stokes_mesh_pt);
this->set_mesh(1,Solid_mesh_pt);

unsigned n_fluid_dof_type = this->ndof_types_in_mesh(0);
unsigned n_total_dof_type = n_fluid_dof_type + this->ndof_types_in_mesh(1);

Next we define the mapping from dof number to block number. The preconditioner has two block types – fluid
and solid – therefore we group the fluid dofs into block type 0 and the solid dofs into block type 1. We define a

Generated by Doxygen

38 oomph-lib's Block Preconditioning Framework

map from dof type to block type in a vector (the vector indices denote the dof type and the vector elements denote
the block type) and pass it to block_setup(...) to complete the setup of the BlockPreconditioner
infrastructure.
// This fsi preconditioner has two types of block -- fluid and solid.
// Create a map from DOF number to block type. The fluid block is labelled
// 0 and the solid block 1.
Vector<unsigned> dof_to_block_map(n_total_dof_type,0);
for (unsigned i = n_fluid_dof_type; i < n_total_dof_type; i++)
{
dof_to_block_map[i] = 1;
}

// Call the BlockPreconditioner method block_setup(...) to assemble the data
// structures required for block preconditioning.
this->block_setup(dof_to_block_map);

Next we set up the subsidiary operators required by the preconditioner. We start with the solid subsidiary precon-
ditioner (S̃). We extract the solid matrix block S from the Jacobian using the BlockPreconditioner method
get_block(...) and then set up the solid subsidiary preconditioner:
// First the solid preconditioner
//===============================

// get the solid block matrix (1,1)
CRDoubleMatrix* solid_matrix_pt = new CRDoubleMatrix;
this->get_block(1,1,*solid_matrix_pt);

// setup the solid preconditioner
// (perform the LU decomposition)
Solid_preconditioner_pt->setup(solid_matrix_pt);
delete solid_matrix_pt; solid_matrix_pt = 0;

Note that, compared to the previous examples, we have used an alternative, pointer-based version of the get_←↩

block(...) function. However, as before, the block matrix can be deleted once the subsidiary preconditioner
has been set up since the latter retains whatever data it requires.
The fluid subsidiary preconditioner (F̃) a block preconditioner itself. Its setup is therefore performed in two steps:

1. First we turn the NavierStokesSchurComplementPreconditioner into a subsidiary block pre-
conditioner. We assemble a list a fluid dof types in the current (master) preconditioner, and pass this list to
the Navier-Stokes preconditioner to indicate that dof type i in the master FSI preconditioner is dof type i in
the subsidiary fluid preconditioner (for i = 0, 1, 2) (Note that the fact that this mapping is the identity mapping
is a result of choosing the fluid mesh to be mesh 0; in general the index of ns_dof_list corresponds to
the dof type number in the Navier Stokes subsidiary preconditioner and the value corresponds to the index in
this master preconditioner).
// Next the fluid preconditioner
//==============================

// Specify the relationship between the enumeration of DOF types in the
// master preconditioner and the Schur complement subsidiary preconditioner
// so that ns_dof_type[i_nst] contains i_master
Vector<unsigned> ns_dof_list(n_fluid_dof_type);
for (unsigned i = 0; i < n_fluid_dof_type; i++)
{
ns_dof_list[i] = i;

}

// Turn the NavierStokesSchurComplement preconditioner into a subsidiary
// preconditioner of this (FSI) preconditioner
Navier_stokes_preconditioner_pt->
turn_into_subsidiary_block_preconditioner(this,ns_dof_list);

2. Next we set up the NavierStokesSchurComplementPreconditioner. We pass the Navier-←↩

Stokes mesh to the the subsidiary preconditioner and set up the preconditioner. Note that the pointer to the
full FSI Jacobian is passed to the subsidiary block preconditioner. This allows the subsidiary preconditioner
to extract the relevant sub-blocks, using the lookup schemes established by the call to turn_into_←↩

subsidiary_block_preconditioner(...).
// Set up the NavierStokesSchurComplement preconditioner.
// (Pass it a pointer to the Navier Stokes mesh)
Navier_stokes_preconditioner_pt->
set_navier_stokes_mesh(Navier_stokes_mesh_pt);
// Navier Stokes preconditioner is a subsidiary block preconditioner.
// It therefore needs a pointer to the full matrix.
Navier_stokes_preconditioner_pt->setup(this->matrix_pt());

Finally, we set up is the matrix-vector product. This mirrors the set up of the solid subsidiary preconditioner.
First the subsidiary matrix is extracted from the Jacobian and then the operator is set up:

// Finally the fluid onto solid matrix vector product operator
//==

Generated by Doxygen

1.4 Parallelisation 39

// Similar to the solid preconditioner get the matrix
CRDoubleMatrix* fluid_onto_solid_matrix_pt = new CRDoubleMatrix;
this->get_block(1,0,*fluid_onto_solid_matrix_pt);

// And setup the matrix vector product operator
this->setup_matrix_vector_product(Fluid_solid_coupling_matvec_pt,

fluid_onto_solid_matrix_pt,
0);

// Clean up
delete fluid_onto_solid_matrix_pt; fluid_onto_solid_matrix_pt = 0;

Again, the extracted block can be deleted since the matrix vector product operator retains the relevant data. The
FSI preconditioner is now ready to be used.

1.3.9 Preconditioner Solve

The preconditioner_solve(...) method applies
the preconditioner to the input vector y and returns the result in z.
We start by applying the Navier-Stokes preconditioner F̃ to the fluid elements y_f of y. Since F̃ is a sub-
sidiary block preconditioner we apply it to the full-length y and z vectors which contain both the fluid and solid
unknowns. The block preconditioning infrastructure utilised within the NavierStokesSchurComplement←↩

Preconditioner will ensure that the preconditioner only operates on fluid dofs.
//=start_of_preconditioner_solve==
/// Apply preconditioner.
//==
template<typename MATRIX>
void SimpleFSIPreconditioner<MATRIX>::preconditioner_solve(
const DoubleVector &y, DoubleVector &z)

{
// Fluid Subsidiary Preconditioner
//=================================
// Start by applying the Fluid subsidiary preconditioner
// The fluid subsidiary preconditioner is a block preconditioner and
// hence we pass it the global residual and solution vectors (y and z)
Navier_stokes_preconditioner_pt->preconditioner_solve(y,z);

The fluid elements z_f of the vector z will now have been updated to contain the action of the SchurComplement
preconditioner on the fluid elements y_f of the vector y.
To apply the fluid-solid coupling matrix vector product Csf , we copy the fluid elements from z into another vector
z_f. We then apply the matrix-vector product operator to z_f and store the result in a vector w. Finally, we subtract
w from the solid residuals y_s and store the result in w to complete the application of the matrix-vector product.
// Fluid Onto Solid Matrix Vector Product Operator
//==
// The vector z_f contains the result of the action of the
// NavierStokesPreconditioner on a subset of the elements of z.
// Remember the fluid block index is 0 and the solid block index is 1.
DoubleVector z_f;
this->get_block_vector(0,z,z_f);
// Apply the matrix vector product to z_f and store the results in w
DoubleVector w;
Fluid_solid_coupling_matvec_pt->multiply(z_f,w);
// The vector y_s contains the solid residuals
DoubleVector y_s;
this->get_block_vector(1,y,y_s);
// Subtract the action of the fluid onto solid matrix vector product from y_s
y_s -= w;
w = y_s;

Finally, we apply the solid subsidiary preconditioner S̃ to w and return the result to z. We note that because the
solid subsidiary preconditioner is not a block preconditioner, the preconditioner solve method must be called with
the solid block vectors. The result is then copied to the full-length vector z which contains the fluid and solid dofs.
// Solid Subsidiary Preconditioner
//================================
// Apply the solid preconditioner to s and return the result to the
// global solution vector z
DoubleVector z_s;
Solid_preconditioner_pt->preconditioner_solve(w,z_s);
this->return_block_vector(1,z_s,z);
}

1.4 Parallelisation

We note that the above discussion did not address the parallelisation of the preconditioners. This is because all
the required parallel features are "hidden" within the block preconditioning framework which relies heavily on the
library's distributed linear algebra infrastructure. Any of the preconditioners discussed in
this tutorial can therefore be used without change when oomph-lib is compiled with MPI support and if the the

Generated by Doxygen

../../../mpi/distributed_linear_algebra_infrastructure/html/index.html

40 oomph-lib's Block Preconditioning Framework

executable is run on multiple processes.

1.5 Source files for this tutorial

• The source file for the simple block diagonal preconditioner for the linear elasticity problem is

demo_drivers/linear_solvers/simple_block_preconditioners.h

• The driver code demonstrating the use of the simple block diagonal preconditioner for the linear elasticity
problem is

demo_drivers/linear_solvers/two_d_linear_elasticity_with_simple_block←↩

_diagonal_preconditioner.cc

• The source files for the "multi-poisson" preconditioners and the serial driver codes are located in the
directory:

demo_drivers/linear_solvers/

• The serial "multi-poisson" driver code (which demonstrates the use of the various "multi-poisson" precondi-
tioners discussed above) is:

demo_drivers/poisson/two_d_multi_poisson.cc

• The parallel counterpart is here (note that, as claimed, this code uses exactly the same preconditioners as
the serial version):

demo_drivers/mpi/solvers/two_d_multi_poisson.cc

• The (parallel) driver code which demonstrates the implementation and use of the simple FSI preconditioner
(for the "channel with leaflet" problem) is here:

demo_drivers/mpi/solvers/fsi_channel_with_leaflet.cc

1.6 PDF file

A pdf version of this document is available.

Generated by Doxygen

../../../../demo_drivers/linear_solvers/simple_block_preconditioners.h
../../../../demo_drivers/linear_solvers/two_d_linear_elasticity_with_simple_block_diagonal_preconditioner.cc
../../../../demo_drivers/linear_solvers/two_d_linear_elasticity_with_simple_block_diagonal_preconditioner.cc
../../../../demo_drivers/linear_solvers/two_d_multi_poisson.cc
../../../../demo_drivers/mpi/solvers/two_d_multi_poisson.cc
../../../../demo_drivers/mpi/solvers/fsi_channel_with_leaflet.cc

	1 oomph-lib's Block Preconditioning Framework
	1.1 Theoretical background
	1.2 Overview
	1.2.1 The classification of dof types via block preconditionable elements
	1.2.2 dof types, blocks, compound blocks and meshes

	1.3 Simple preconditioner examples
	1.3.1 A block diagonal preconditioner
	1.3.1.1 Theory
	1.3.1.2 Implementation as a BlockPreconditioner
	1.3.1.3 The setup() function
	1.3.1.4 The preconditioner_solve() function
	1.3.1.5 The clean_up_my_memory() function
	1.3.1.6 Comments and Exercises

	1.3.2 A block upper triangular preconditioner
	1.3.2.1 Theory
	1.3.2.2 Implementation as a BlockPreconditioner
	1.3.2.3 The setup() function
	1.3.2.4 The preconditioner_solve() function
	1.3.2.5 The clean_up_my_memory() function

	1.3.3 Combining multiple dof types into compound blocks. Part 1
	1.3.3.1 Theory
	1.3.3.2 Implementation as a BlockPreconditioner
	1.3.3.3 The setup() function
	1.3.3.4 The preconditioner_solve() function
	1.3.3.5 The clean_up_my_memory() function

	1.3.4 Combining multiple dof types into compound blocks. Part 2: How to deal with off-diagonal blocks
	1.3.4.1 Theory
	1.3.4.2 Implementation as a BlockPreconditioner
	1.3.4.3 The setup() function
	1.3.4.4 The preconditioner_solve() function
	1.3.4.5 The clean_up_my_memory() function

	1.3.5 Using subsidiary block preconditioners
	1.3.5.1 Theory
	1.3.5.2 Implementation as a BlockPreconditioner
	1.3.5.3 The setup() function
	1.3.5.4 The preconditioner_solve() function
	1.3.5.5 The clean_up_my_memory() function

	1.3.6 Replacing/modifying blocks
	1.3.6.1 Theory
	1.3.6.2 Implementation as a BlockPreconditioner
	1.3.6.3 The setup() function
	1.3.6.4 The preconditioner_solve() function
	1.3.6.5 The clean_up_my_memory() function

	1.3.7 Coarsening/combining dof types
	1.3.7.1 Theory
	1.3.7.2 Implementation as a BlockPreconditioner
	1.3.7.3 The setup() function
	1.3.7.4 The preconditioner_solve() function
	1.3.7.5 The clean_up_my_memory() function

	1.3.8 Using multiple meshes – explained for a genuine fluid-structure interaction problem
	1.3.8.1 Theory
	1.3.8.2 The Implementation of the FSI Preconditioner
	1.3.8.3 Preconditioner Setup

	1.3.9 Preconditioner Solve

	1.4 Parallelisation
	1.5 Source files for this tutorial
	1.6 PDF file

