Chapter 1

Example problem: Finite-Reynolds-number flow
inside an oscillating ellipse

In this example we consider our first moving-boundary Navier-Stokes problem: The flow of a viscous fluid contained
in an elliptical ring whose walls perform periodic oscillations.

oomph-1ib's Navier-Stokes elements are based on the Arbitrary Lagrangian Eulerian (ALE) form of the Navier-
Stokes equations and can therefore be used in moving domain problems. In this example we illustrate their use in
Domain - based meshes (first discussed in the example demonstrating the solution of the unsteady heat
equation in a moving domain) in which MacroElements are used to update the nodal positions in
response to changes in the domain boundary. In subsequent examples, we will discuss alternative, sparse mesh
update techniques that are useful in problems with free boundaries and in fluid-structure interaction problems.

Generated by Doxygen

../../../unsteady_heat/two_d_unsteady_heat_ALE/html/index.html
../../../unsteady_heat/two_d_unsteady_heat_ALE/html/index.html

2 Example problem: Finite-Reynolds-number flow inside an oscillating ellipse

Finite-Reynolds-number-flow driven by an oscillating ellipse

We consider the unsteady 2D flow of a Newtonian fluid that is contained in an oscillating elliptical ring whose wall
shape is parametrised by the Lagrangian coordinate £ as

_(a(t)cos(§)
Ry(§) = (a~1(t)sin(€))
where

~ 2mt
(I(t) = A —+ ACOb (T) .

A represents the average half-axis of the elliptical ring in the xz1-direction, and Ais the amplitude of its periodic
variation. The ring has constant cross-sectional area — consistent with the incompressibility of the fluid whose
motion is governed by the ALE form of the Navier-Stokes equations,

o Y ou;\ B Op i Ou; Ouy
Re (St D + (uj U) 8ch> T Oy + oz (8% * ox;)’)

and the continuity equation

8ui

81’1' ’

where u;w is the mesh velocity. We exploit the symmetry of the problem and solve the equations in the quarter
domain

D = {(.Il,xg)

21 >0, 25 > 0, (ax(i))er (z2a(t))” < 1},

shown in this sketch (for A =1, A=1landT = 1),

time=0

R
T

Figure 1.1 Sketch of the computational domain.

The fluid is subject to no-slip boundary conditions on the curved wall,

_ ORy (&)
u|8De.ll’ipse - at
and symmetry conditions on the symmetry boundaries,
ul‘m2:0 = 07 (%) 21=0 =0.

C -, . 5 Generated by Doxygen
The initial conditions for the velocity are given by

u(zy,z2,t =0) = ure(z1, z2),

1.1 An exact solution 3

1.1 An exact solution
It is easy to show (by inspection) that the unsteady stagnation point flow

1d o A sin (2t 1d o A sin (2t
u1($1,$2,t):——a = (F) 1 and U2($1,$2,t):———a$2=— rAsin ()

adt ™ (A—i—Acos(Q;t)) adt (A+Acos€%))

X2,

is an exact solution of the above problem as it satisfies the Navier-Stokes equations and the velocity boundary
conditions. The pressure is given by

27 A Re (x% St cos (22L) A + a3 StA— mlA + x%A cos? (25L) — 23 St cos (2) — a3 StA— x2A + m%Acos (2;’“‘))

T
p = o~
T2 <A2 +2AAcos (Z) + A2 cos? (%))

1.2 Results

The two figures below show two snapshots of the solution for Re = Re St = 100, extracted from an animations
of the results computed with Taylor-Hood and Crouzeix-Raviart elements. In both cases, the
exact solution was used as the initial condition for the velocities. The figures show "carpet plots" of the two velocity
components and the pressure, respectively, and a contour plot of the pressure, superimposed on the moving mesh.
The carpet plot of the velocities clearly shows that the flow is of stagnation-point type as the horizontal velocity, 1 ,
is a linear function of x; while the vertical velocity, us , is a linear function of —

i A TS
R R
Y A T

W N A

ufx.y.1)

plx.y.t

Figure 1.2 Plot of the velocity and pressure fields computed with 2D Crouzeix-Raviart elements, with
Re=100 and St=1.

Generated by Doxygen

../figures/TH.avi
../figures/CR.avi

4 Example problem: Finite-Reynolds-number flow inside an oscillating ellipse

time

S T W R V. T

i e s W)
5 A A e e

u(x,y.1) vixy.t)

pluy.i) pressure distribution

300
200
100

=100
-200

Figure 1.3 Plot of the velocity and pressure fields computed with 2D Taylor-Hood elements, with Re=100
and St=1.

1.3 The moving wall

As usual, we represent the moving wall as a GeomOb ject and define its shape by implementing the pure virtual
function GeomOb ject : :position (.. .). The arguments to the constructor specify the mean half-axis of the
ellipse, A, the amplitude of its variations, A, and the period of the oscillation, 7. We also pass the pointer to a
Time object to the constructor and store it in a private data member, to allow the position (...) functions to

access the current value of the continuous time.
//============start_of_MyEllips
/// Oscillating ellipse

/// \fl x = (A + \widehat{A} \cos(2\pi t/T)) \cos(\xi) \f]

/// \fl y = \frac{\sin(\xi) }{A + \widehat{A} \cos(2\pi t/T)} \f]
/// Note that cross-sectional area is conserved.
//

class MyEllipse : public GeomObject
{
public:

/// Constructor: Pass initial x-half axis, amplitude of x-variation,
/// period of oscillation and pointer to time object.
MyEllipse (const double& a, const double& a_hat,
const double& period, Timex time_pt)
GeomObject (1,2), A(a), A_hat(a_hat), T(period), Time_pt (time_pt) {}

/// Destructor: Empty
virtual ~MyEllipse() {}

/// Current position vector to material point at
/// Lagrangian coordinate xi
void position (const Vector<double>& xi, Vector<double>& r) const
{
// Get current time:
double time=Time_pt->time () ;
// Position vector
double axis=A+A_hat*cos (2.0xMathematicalConstants::Pixtime/T);
r[0] = axisxcos(xi[0]);
r[(l] = (1.0/axis)*sin(xi[0]);
}

/// Parametrised position on object: r(xi). Evaluated at
/// previous time level. t=0: current time; t>0: previous
/// time level.
void position(const unsigned& t, const Vector<double>& xi,
Vector<double>& r) const

{

// Get current time:

double time=Time_pt->time (t);

// Position vector

Generated by Doxygen

1.4 The global parameters 5

double axis=A+A_hatxcos (2.0«MathematicalConstants::Pixtime/T);

r[(0] = axisxcos(xi[0]);
r(l] = (1.0/axis)*sin(xi[0]);
}

private:

/// x-half axis
double A;

/// Bmplitude of variation in x—half axis
double A_hat;

/// Period of oscillation
double T;

/// Pointer to time object
Timex Time_pt;
}; // end of MyEllipse

1.4 The global parameters

As in most previous examples, we use a namespace to define and initialise global problem parameters such as the
Reynolds and Strouhal numbers:

//===start_of_namespac
/// Namepspace for global parameters
//

namespace Global Physical_Variables
{

/// Reynolds number
double Re=100.0;

/// Womersley = Reynolds times Strouhal
double ReSt=100.0;

We also define and initialise the parameters that specify the motion of the domain boundary and specify the exact
solution.

/// x-Half axis length
double A=1.0;

/// x-Half axis amplitude
double A_hat=0.1;

/// Period of oscillations
double T=1.0;

/// Exact solution of the problem as a vector containing u,v,p
void get_exact_u(const double& t, const Vector<double>& x, Vector<double>& u)
{
using namespace MathematicalConstants;
// Strouhal number
double St = ReSt/Re;
// Half axis
double a=A+A_hatxcos (2.0%xPi*t/T);
double adot=-2.0%A_hat+Pi*sin(2.0+Pi*t/T)/T;
u.resize(3);
// Velocity solution
ul[0]=adot*x[0]/a;
ul[l]l=-adot*x[1]/a;
// Pressure solution
ul[2]=(2.0*A_hat*Pi*Pi*Rex (x[0]*x[0]*St*cos (2.0*Pi*t/T)*xA +
0]*x[0]*St*A_hat - x[0]*x[0]*A_hat +
0]*x[0]*A_hat*cos (2.0xPixt/T)*cos (2.0%Pi*xt/T) —
1]1#x[1]*St*cos (2.0%xPixt/T) A —
1]1xx[1]*St+xA_hat - x[l]*xx[1]*A_hat +
1]1*x[1]*A_hat*cos (2.0%Pi*t/T)*cos (2.0xPixt/T)))
/(T*Tx (A*A + 2.0%AxA_hatxcos (2.0xPixt/T) +
A_hat*A_hat+cos (2.0xPi*t/T) xcos (2.0«Pixt/T)));
}

} // end of namespace

1.5 The driver code

As in most previous unsteady demo codes, we allow the code to be run in a validation mode (in which we use
a coarser mesh and execute fewer timesteps). This mode is selected by specifying an (arbitrary) command line

argument that we store in the namespace CommandLineArgs.
//======start_of_main
/// Driver code for unsteady Navier-Stokes flow, driven by

/// oscillating ellipse. If the code is executed with command line
/// arguments, a validation run is performed.

Generated by Doxygen

6 Example problem: Finite-Reynolds-number flow inside an oscillating ellipse

//
int main(int argc, charx argv([])

{

// Store command line arguments
CommandLineArgs: :setup (argc, argv) ;

We create a DocInfo object to specify the output directory, build the problem with adaptive Crouzeix-Raviart
elements and the BDF <2 > timestepper and perform the unsteady simulation.

// Solve with Crouzeix-Raviart elements

{

// Create DocInfo object with suitable directory name for output
DocInfo doc_info;

doc_info.set_directory ("RESLT_CR") ;

//Set up problem
OscEllipseProblem<RefineableQCrouzeixRaviartElement<2>,BDF<2> > problem;

// Run the unsteady simulation
problem.unsteady_run (doc_info) ;

}

Then we repeat this process for adaptive Taylor-Hood elements.

// Solve with Taylor-Hood elements

{

// Create DocInfo object with suitable directory name for output
DocInfo doc_info;

doc_info.set_directory ("RESLT_TH");

//Set up problem
OscEllipseProblem<RefineableQTaylorHoodElement<2>,BDF<2> > problem;

// Run the unsteady simulation
problem.unsteady_run (doc_info) ;

}

}; // end of main

1.6 The problem class

Most of the problem class is a straightforward combination of the problem classes employed in the simulation of

the adaptive driven cavity and Rayleigh channel problems, in thatthe problem combines
unsteadiness with spatial adaptivity (though in the present problem the adaptivity is only used to uniformly refine
the very coarse base mesh; we refer to another example for the use of full spatial adaptivity in a moving-domain
Navier-Stokes problem).

//=====start_of_problem_class
/// Navier-Stokes problem in an oscillating ellipse domain.
//

template<class ELEMENT, class TIMESTEPPER>
class OscEllipseProblem : public Problem

{

public:

/// Constructor
OscEllipseProblem() ;

/// Destructor (empty)
~OscEllipseProblem() {}

/// Update the problem specs after solve (empty)
void actions_after_newton_solve () {}

/// Update problem specs before solve (empty)
void actions_before_newton_solve () {}

/// Actions before adapt (empty)
void actions_before_adapt () {}

/// Actions after adaptation, pin relevant pressures
void actions_after_adapt ()
{
// Unpin all pressure dofs
RefineableNavierStokesEquations<2>::
unpin_all_pressure_dofs (mesh_pt () ->element_pt ());
// Pin redundant pressure dofs
RefineableNavierStokesEquations<2>::
pin_redundant_nodal_pressures (mesh_pt () ->element_pt ());

// Now set the first pressure dof in the first element to 0.0
fix_pressure(0,0,0.0);
} // end of actions_after_adapt

The key new feature in the current problem is the presence of the moving domain which requires updates of

1. all nodal positions

Generated by Doxygen

../../driven_cavity/html/index.html
../../rayleigh_channel/html/index.html

1.7 The problem constructor 7

2. the prescribed velocities on the moving wall via the no-slip condition.

before every timestep. Since the nodal positions of the QuarterCircleSectorMesh are determined via its
MacroElement / Domain representation (which updates the nodal position in response to changes in the ge-
ometry of the GeomOb ject s that define its boundaries), the former task may be accomplished by executing the
Mesh: :node_update () function; the update of the no-slip condition may be performed by calling the function
FSI_functions::apply_no_slip_on_moving wall (Nodex node_pt), a helper function, defined
in the namespace FSI_functions, which updates the velocity components u1, uz[, us] according to the no-slip

boundary condition

(9)(P10de
UNode = 4475%447

where the time-derivative of the nodal positions is evaluated by the Node ' s positional timestepper. [Note: The
function FSI_functions::apply_no_slip_on_moving_wall (...) assumes that the velocity com-
ponents are stored in the Node ' s first 2 [3] values. This is consistent with the storage of the velocity component
in all existing Navier-Stokes elements. If you develop your own Navier-Stokes elements and use a different storage
scheme you use this function at your own risk.]

Here is the implementation of these tasks:

/// Update the problem specs before next timestep
void actions_before_implicit_timestep (
{
// Update the domain shape
mesh_pt () ->node_update () ;
// Ring boundary: No slip; this implies that the velocity needs
// to be updated in response to wall motion
unsigned ibound=1;
unsigned num_nod=mesh_pt () -—>nboundary_node (ibound) ;
(unsigned inod=0; inod<num_nod; inod++)
{
// Which node are we dealing with?
Node* node_pt=mesh_pt () —>boundary_node_pt (ibound, inod) ;

// RApply no slip
FSI_functions::apply_no_slip_on_moving_wall (node_pt);
}

}

/// Update the problem specs after timestep (empty)
void actions_after_ implicit_timestep () {}

The remaining functions are similar to those used in our previous Navier-Stokes examples and require no further
explanation.

/// Doc the solution
void doc_solution(DocInfo& doc_info);

/// Timestepping loop
void unsteady_run (DocInfo& doc_info);

/// Set initial condition
void set_initial_condition{();
private:

/// Fix pressure in element e at pressure dof pdof and set to pvalue
void fix_pressure (const unsigned &e, const unsigned &pdof,
const double &pvalue)

{

//Cast to proper element and fix pressure

dynamic_cast<ELEMENT*> (mesh_pt () —>element_pt (e))—>

fix_pressure (pdof, pvalue);
} // end_of_fix pressure

/// Pointer to GeomObject that specifies the domain bondary
GeomObjectx Wall_pt;
}; // end of problem class

1.7 The problem constructor

We start by creating a timestepper of the type specified by the Problem' s template parameter and add (a pointer
to) it to the Problem's collection of Timesteppers. Recall that this function also creates the Problem's
Time object.

//========start_of_constructor
/// Constructor for Navier-Stokes problem on an oscillating ellipse domain.
//

template<class ELEMENT, class TIMESTEPPER>
OscEllipseProblem<ELEMENT, TIMESTEPPER>: :0scEllipseProblem()
{

Generated by Doxygen

8 Example problem: Finite-Reynolds-number flow inside an oscillating ellipse

//Create the timestepper and add it to the problem
add_time_stepper_pt (new TIMESTEPPER) ;

Next we create the GeomOb ject that defines the curvilinear domain boundary and pass it to the Mesh constructor.

(Since we will only use adaptivity to refine the mesh uniformly, it is not necessary to define an error estimator.)
// Setup mesh

// Build geometric object that forms the curvilinear domain boundary:
// an oscillating ellipse

// Half axes

double a=Global_Physical_Variables::A;

// Variations of half axes

double a_hat=Global_Physical Variables::A_hat;

// Period of the oscillation

double period=Global_Physical_Variables::T;

// Create GeomObject that specifies the domain bondary

Wall_pt=new MyEllipse (a,a_hat,period,Problem::time_pt());

// Start and end coordinates of curvilinear domain boundary on ellipse
double xi_1l0=0.0;

double xi_hi=MathematicalConstants::Pi/2.0;

// Now create the mesh. Separating line between the two

// elements next to the curvilinear boundary is located half-way

// along the boundary.

double fract_mid=0.5;

Problem: :mesh_pt () = new RefineableQuarterCircleSectorMesh<ELEMENT> (
Wall_pt,xi_lo, fract_mid,xi_hi,time_stepper_pt());

// Set error estimator NOT NEEDED IN CURRENT PROBLEM SINCE

// WE’RE ONLY REFINING THE MESH UNIFORMLY

//Z2ErrorEstimator+ error_estimator_pt=new Z2ErrorEstimator;
//mesh_pt () ->spatial_error_estimator_pt ()=error_estimator_pt;

Both velocity components on the curvilinear mesh boundary are determined by the no-slip condition and must
therefore be pinned,

// Fluid boundary conditions

// Ring boundary: No slip; this also implies that the velocity needs
// to be updated in response to wall motion
unsigned ibound=1;

{

unsigned num_nod= mesh_pt () ->nboundary_node (ibound) ;

for (unsigned inod=0; inod<num_nod; inod++)

{

// Pin both velocities
for (unsigned 1i=0;1<2;i++)
{
mesh_pt () ->boundary_node_pt (ibound, inod) ->pin (i) ;
}
}
} // end boundary 1

whereas on the symmetry boundaries only one of the two velocity components is set to zero:
// Bottom boundary:

ibound=0;

{

unsigned num_nod= mesh_pt () ->nboundary_node (ibound) ;
for (unsigned inod=0; inod<num_nod; inod++)

{
// Pin vertical velocity
{
mesh_pt () —>boundary_node_pt (ibound, inod) ->pin (1) ;
}
}
} // end boundary 0
// Left boundary:
ibound=2;
{
unsigned num_nod= mesh_pt () ->nboundary_node (ibound) ;
for (unsigned inod=0; inod<num_nod; inod++)
{
// Pin horizontal velocity
{
mesh_pt () ->boundary_node_pt (ibound, inod) ->pin (0) ;
}
}
} // end boundary 2

Finally, we pass the pointers to Re, Re St and the global Time object (automatically created by the Problem
when the timestepper was passed to it at the beginning of the constructor) to the elements, pin the redundant nodal
pressure degrees of freedom (see the discussion of the adaptive driven-cavity problem for more
details), pin one pressure degree of freedom, and set up the equation numbering scheme.

// Complete the build of all elements so they are fully functional

f e e -
// Find number of elements in mesh
unsigned n_element = mesh_pt () ->nelement () ;

// Loop over the elements to set up element-specific

Generated by Doxygen

../../../navier_stokes/adaptive_driven_cavity/html/index.html

1.8 Assigning the initial conditions 9

// things that cannot be handled by constructor
for (unsigned i=0;i<n_element;i++)
{
// Upcast from FiniteElement to the present element
ELEMENT *el_pt = dynamic_cast<ELEMENTx> (mesh_pt () ->element_pt (i));
//Set the Reynolds number, etc
el_pt->re_pt () = &Global_Physical_Variables::Re;
el_pt->re_st_pt () = &Global_Physical_Variables::ReSt;
}
// Pin redundant pressure dofs
RefineableNavierStokesEquations<2>::
pin_redundant_nodal_pressures (mesh_pt () ->element_pt());

// Now set the first pressure dof in the first element to 0.0
fix_pressure(0,0,0.0);

// Do equation numbering

cout « "Number of equations: " « assign_eqn_numbers () « std::endl;
} // end of constructor

1.8 Assigning the initial conditions

This function assigns "history values" for the velocities and the nodal positions from the exact solution. It is im-
plemented in exactly the same way as in the solution of the unsteady heat equation in a moving
domain. Note that because the domain is moving, the nodal positions must be updated (according to the position
of the domain boundary at the relevant previous timestep), before evaluating the exact solution at the nodal position.

// start_of_set_initial_condition
/// Set initial condition: Assign previous and current values
/// from exact solution.

//
template<class ELEMENT,class TIMESTEPPER>
void OscEllipseProblem<ELEMENT, TIMESTEPPER>::set_initial_condition ()
{

// Backup time in global timestepper

double backed_up_time=time_pt ()->time () ;

// Past history for velocities must be established for t=time(O-deltat,
// Then provide current values (at t=time0) which will also form
// the initial guess for first solve at t=timeO+deltat

// Vector of exact solution value
Vector<double> soln(3);
Vector<double> x(2);

//Find number of nodes in mesh
unsigned num_nod = mesh_pt () ->nnode () ;

// Get continuous times at previous timesteps
int nprev_steps=time_stepper_pt () ->nprev_values();
Vector<double> prev_time (nprev_steps+1);
for (int itime=nprev_steps;itime>=0;itime--)
{
prev_time[itime]=time_pt () ->time (unsigned (itime)) ;

}

// Loop over current & previous timesteps (in outer loop because
// the mesh also moves!)

i (int itime=nprev_steps;itime>=0;itime--)

{

double time=prev_time[itime];

// Set global time (because this is how the geometric object refers
// to continous time
time_pt () ->time ()=time;

cout « "setting IC at time =" « time « std::endl;

// Update the mesh for this value of the continuous time
// (The wall object reads the continous time from the

// global time object)

mesh_pt () ->node_update () ;

// Loop over the nodes to set initial guess everywhere
(unsigned jnod=0; jnod<num_nod; jnod++)
{
// Get nodal coordinates
x[0]=mesh_pt () —>node_pt (jnod) ->x (0) ;
x[1]=mesh_pt () ->node_pt (jnod) ->x (1) ;

// Get exact solution (unsteady stagnation point flow)
Global_Physical_Variables::get_exact_u(time, x,soln);

// Assign solution
mesh_pt () =>node_pt (jnod) ->set_value (itime, 0,s0ln[0]);

Generated by Doxygen

../../../unsteady_heat/two_d_unsteady_heat_ALE/html/index.html#IC
../../../unsteady_heat/two_d_unsteady_heat_ALE/html/index.html#IC

10 Example problem: Finite-Reynolds-number flow inside an oscillating ellipse

mesh_pt () ->node_pt (jnod) ->set_value (itime, 1,so0ln[1]);

// Loop over coordinate directions
£ (unsigned 1=0;1i<2;i++)
{
mesh_pt () ->node_pt (jnod) ->x (itime, i)=x[1i];
}
}

} // end of loop over previous timesteps

// Reset backed up time for global timestepper
time_pt () —>time () =backed_up_time;

} // end of set initial condition

1.9 Post processing

The function doc_solution(...) issimilartothatinthe unsteady heat examples andthe previous
Navier-Stokes examples. We add dummy zones and tecplot geometries to facilitate the post-processing of the
results with tecplot.

//=======start_of_doc_solution
/// Doc the solution
//

template<class ELEMENT, class TIMESTEPPER>
void OscEllipseProblem<ELEMENT, TIMESTEPPER>: :doc_solution (DocInfo& doc_info)
{

ofstream some_file;

char filename[100];

// Number of plot points

unsigned npts;

npts=5;

// Output solution

[/ =mmmm e

sprintf (filename, "%s/soln%i.dat",doc_info.directory().c_str(),
doc_info.number());

some_file.open (filename);

mesh_pt () -—>output (some_file, npts);

some_file « "TEXT X=2.5,Y=93.6,F=HELV, HU=POINT, C=BLUE, H=26, T=\"time = "

« time_pt ()->time () « "\"";

some_file « "GEOMETRY X=2.5,Y=98,T=LINE,C=BLUE,LT=0.4" « std::endl;
some_file « "1" « std::endl;

some_file « "2" « std::endl;

some_file « " 0 0" « std::endl;

some_file « time_pt ()->time()*20.0 « " 0" « std::endl;

// Write dummy zones that force tecplot to keep the axis limits constant
// while the domain is moving.

some_file « "ZONE I=2,J=2" « std::endl;

some_file « "0.0 0.0 -0.65 -0.65 -200.0" « std::endl;

some_file « "1.15 0.0 -0.65 -0.65 -200.0" « std::endl;

some_file « "0.0 1.15 -0.65 -0.65 -200.0" « std::endl;

some_file « "1.15 1.15 -0.65 -0.65 -200.0" « std::endl;

some_file « "ZONE I=2,J=2" « std::endl;

some_file « "0.0 0.0 0.65 0.65 300.0" « std::endl;

some_file « "1.15 0.0 0.65 0.65 300.0" « std::endl;

some_file « "0.0 1.15 0.65 0.65 300.0" « std::endl;

some_file « "1.15 1.15 0.65 0.65 300.0" « std::endl;
some_file.close();

// Output exact solution

A

A

e

sprintf (filename, "$s/exact_soln%i.dat",doc_info.directory () .c_str(),
doc_info.number ());

some_file.open(filename);

mesh_pt () ->output_fct (some_file,npts,time_pt ()->time (),

Global_Physical_Variables::get_exact_u);
some_file.close();
// Doc error

double error,norm;
sprintf (filename, "$s/error%i.dat",doc_info.directory () .c_str()

doc_info.number());
some_file.open(filename);
mesh_pt () ->compute_error (some_file,
Global_Physical_Variables::get_exact_u,
time_pt () ->time (),

error,norm) ;
some_file.close();
// Doc solution and error

e

cout « "error: " « error « std::endl;

cout « "norm : " « norm « std::endl « std::endl;

// Plot wall posn

e

sprintf (filename, "%s/Wall%i.dat",doc_info.directory().c_str(),

doc_info.number());

Generated by Doxygen

../../../unsteady_heat/two_d_unsteady_heat/html/index.html#doc

1.10 The timestepping loop 11

some_file.open (filename);

unsigned nplot=100;
(unsigned iplot=0;iplot<nplot;iplot++)
{
Vector<double> xi_wall(l), r_wall(2);
xi_wall[0]=0.5xMathematicalConstants::Pixdouble (iplot)/double (nplot-1);
Wall pt->position(xi_wall,r_wall);
some_file « r_wall[0] « " " « r_wall[l] « std::endl;
}

some_file.close();

// Increment number of doc
doc_info.number () ++;
} // end of doc_solution

1.10 The timestepping loop

The timestepping loop is extremely straightforward: We choose a timestep and the overall length of the simulation,
initialise the timestepper(s) by calling Problem: :initialise_dt (...) and assign the initial condition.

//=======start_of_unsteady_run
/// Unsteady run

//
template<class ELEMENT, class TIMESTEPPER>
void OscEllipseProblem<ELEMENT, TIMESTEPPER>: :unsteady_run (DocInfo& doc_info)
{

// Specify duration of the simulation

double t_max=3.0;

// Initial timestep

double dt=0.025;

// Initialise timestep

initialise_dt (dt);

// Set initial conditions.

set_initial_condition();

Next we set the number of timesteps for a normal run.

// Alternative initial conditions: impulsive start; see exercise.
//assign_initial_values_impulsive () ;

// find number of steps

unsigned nstep = unsigned (t_max/dt);

We over-write this number and perform a single uniform mesh refinement if the code is run in self-test mode (indi-
cated by a non-zero number of command line arguments),

// If validation: Reduce number of timesteps performed and
// use coarse-ish mesh
if (CommandLineArgs::Argc>1)

{

nstep=2;

refine_uniformly();

cout « "validation run" « std::endl;

}
otherwise we refine the mesh three times and output the initial conditions

{
// Refine the mesh three times, to resolve the pressure distribution
// (the velocities could be represented accurately on a much coarser mesh).
refine_uniformly () ;
refine_uniformly () ;
refine_uniformly () ;
}
// Output solution initial
doc_solution (doc_info);

Finally we execute the proper timestepping loop and document the solution after every timestep
// Timestepping loop
(unsigned istep=0;istep<nstep;istep++)

{

cout « "TIMESTEP " « istep « std::endl;

cout « "Time is now " « time_pt()->time() « std::endl;

// Take timestep

unsteady_newton_solve (dt) ;

//Output solution
doc_solution(doc_info);
}

} // end of unsteady_run

1.11 Comments and Exercises

1. Compare the results of the numerical simulation in which u ;¢ is given by the exact solution (an unsteady stag-
nation point flow) to that obtained from an "impulsive start" where u;c = 0. (This is most easily implemented
by replacing the callto set_initial_condition () withacallto Problem: :assign_initial«

Generated by Doxygen

12 Example problem: Finite-Reynolds-number flow inside an oscillating ellipse

_values_impulsive ().

Why do we obtain the same velocity with both initial conditions and why does the pressure take a few
timesteps (How many exactly? Compare simulations with BDF <4> and BDF < 2> timesteppers.) to "catch
up" with the exact solution? [Hint: The unsteady stagnation point flow is a potential flow, therefore the viscous
terms in the Navier-Stokes equations disappear. See also chapter 3.19 in Volume 2 of Gresho & Sani's
wonderful book "Incompressible Flow and the Finite Element Method".]

1.12 Source files for this tutorial
» The source files for this tutorial are located in the directory:
demo_drivers/navier_stokes/osc_ellipse/
» The driver code is:

demo_drivers/navier_stokes/osc_ellipse/osc_quarter_ellipse.cc

1.13 PDF file

A pdf version of this document is available.

Generated by Doxygen

../../../../demo_drivers/navier_stokes/osc_ellipse/osc_quarter_ellipse.cc

	1 Example problem: Finite-Reynolds-number flow inside an oscillating ellipse
	1.1 An exact solution
	1.2 Results
	1.3 The moving wall
	1.4 The global parameters
	1.5 The driver code
	1.6 The problem class
	1.7 The problem constructor
	1.8 Assigning the initial conditions
	1.9 Post processing
	1.10 The timestepping loop
	1.11 Comments and Exercises
	1.12 Source files for this tutorial
	1.13 PDF file

