Chapter 1

The spatially-adaptive solution of the azimuthally
Fourier-decomposed equations of 3D time-harmonic
linear elasticity on unstructured meshes

In this tutorial we re-visit the solution of the time-harmonic equations of 3D linear elasticity in cylindrical polar
coordinates, using a Fourier decomposition of the solution in the azimuthal direction. The driver code is very similar
to the one discussed in another tutorial - the main purpose of the current tutorial is to demonstrate
the use of spatial adaptivity on unstructured meshes. Compared to the test case considered in the other
tutorial we study a slightly less contrived test problem: the forced time-harmonic oscillations of a finite-length,
hollow cylinder, loaded by a time-periodic pressure load on its inner surface.

Acknowledgement: This implementation of the equations and the documentation were developed jointly with
Robert Harter (Thales Underwater Systems Ltd) with financial support from a KTA Secondment grant from
University of Manchester's EPSRC-funded Knowledge Transfer Account.

1.1 The test problem

The figure below shows the problem considered in this tutorial: an annular elastic body that occupies the region
Tmin < 7 < Tmax, Zmin < 2 < Zmax IS loaded by a time-harmonic pressure load acting on its inner surface (at
T = Tmin). 1€ upper and lower ends of the hollow cylinder (at z = 2y and z = zniy) are held at a fixed position.
Here is an animation of the resulting displacement field for r,;, = 0.1 and ryax = 1.1.

Generated by Doxygen


../../cylinder/html/index.html
../../cylinder/html/index.html
../../cylinder/html/index.html

The spatially-adaptive solution of the azimuthally Fourier-decomposed equations of 3D time-harmonic
2 linear elasticity on unstructured meshes

15

05

wt=18/20 x 2n
1 1

1 I 1
-1 -0.5 0 0.5 1
r

Figure 1.1 Forced oscillations of a thick-walled, hollow cylinder, subject to a pressure load on its inner
surface. The pink shape in the background shows the cylinder's undeformed shape (in a radial plane); the
mesh plotted in the region r < 0 illustrates how spatial adaptivity refines the mesh in regions of sharp
displacement gradients (near the loaded surface and the supports).

1.2 The numerical solution

The driver code for this problem is very similar to the one discussed in another tutorial. Running sdiff
on the two driver codes

demo_drivers/time_harmonic_fourier_decomposed_linear_«
elasticity/cylinder/cylinder.cc

and

demo_drivers/time_harmonic_fourier_decomposed_linear_ <«
elasticity/cylinder/pressure_loaded_cylinder.cc

shows you the differences, the most important of which are:
» The change of the forcing to a spatially constant pressure load on the inside boundary.

» The provision of the actions_before/after_adapt() functions and a helper function complete_+«
problem_setup () which rebuilds the elements (by passing the problem parameters to the elements) fol-
lowing the unstructured mesh adaptation. (The need/rationale for such a function is discussed in another
tutorial.)

» The mesh generation and the application of boundary conditions at the upper and lower boundaries of the
hollow cylinder. .
All of this is reasonably straightforward and provides a powerful code that automatically adapts the mesh in
regions of large displacement gradients. Have a look through the driver code and play with it.

1.3 Code listing

Here's a listing of the complete driver code:
//LIic//
//LIC// This file forms part of oomph-lib, the object-oriented,
//LIC// multi-physics finite-element library, available
//LIC// at http://www.oomph-lib.org.

//LIc//

Generated by Doxygen


../../cylinder/html/index.html
../../../../demo_drivers/time_harmonic_fourier_decomposed_linear_elasticity/cylinder/cylinder.cc
../../../../demo_drivers/time_harmonic_fourier_decomposed_linear_elasticity/cylinder/cylinder.cc
../../../../demo_drivers/time_harmonic_fourier_decomposed_linear_elasticity/cylinder/pressure_loaded_cylinder.cc
../../../../demo_drivers/time_harmonic_fourier_decomposed_linear_elasticity/cylinder/pressure_loaded_cylinder.cc
../../../meshes/mesh_from_inline_triangle/html/index.html
../../../meshes/mesh_from_inline_triangle/html/index.html

1.3 Code listing

//LIC//
//LIC//
//LIic//
//LIC//
//LIC//
//L1C//
//LIC//
//LIC//
//LIC//
//LIC//
//LIC//
//LIC//
//LIC//
//LIC//
//LIC//
//LIC//
//LIC//
//LIC//
//LIC//
//LIC//

Copyright (C) 2006-2023 Matthias Heil and Andrew Hazel

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

The authors may be contacted at oomph-lib@maths.man.ac.uk.

// Drive
// The o
#include
#include

r
omphlib headers
"generic.h"
"time_harmonic_fourier_decomposed_linear_elasticity.h"

// The mesh

#include
#include
using na
using na
//===sta
/// Name
//

"meshes/rectangular_quadmesh.h"

"meshes/triangle_mesh.h"
mespace std;
mespace oomph;
rt_of_namespac
space for global parameters

namespac
{
/// Def
std::co

/// Def

std::co

e Global_Parameters

ine Poisson’s ratio Nu
mplex<double> Nu(0.3,0.0);

ine the non-dimensional Young’s modulus
mplex<double> E(1.0,0.0);

/// Define Fourier wavenumber
int Fourier_wavenumber = 0;

/// Define the non-dimensional square angular frequency of
/// time-harmonic motion
std::complex<double> Omega_sq (10.0,0.0);

/// Length of domain in r direction

double

Lr = 1.0;

/// Length of domain in z-direction

double
// set
double
double
double
double

Lz = 2.0;

up min & max (r,z) coordinates
rmin = 0.1;

zmin = 0.3;

rmax = rmin+Lr;

zmax = zmin+Lz;

/// Define the imaginary unit

const s
// Pres
double

td::complex<double> I(0.0,1.0);
sure load
P=1.0;

/// The traction function at r=rmin: (t_r, t_z, t_theta)
void boundary_traction(const Vector<double> &x,

const Vector<double> &n,
Vector<std::complex<double> > &result)

// Radial traction

result
// Axi
result
// Azi
result

[0] = Pp;

al traction

[1] = 0.0;
muthal traction
[2] = 0.0;

} // end_of_namespace

//===start_of_problem_class

/// Class to validate time harmonic linear elasticity (Fourier
/// decomposed)

/7

template<class ELEMENT>
class FourierDecomposedTimeHarmonicLinearElasticityProblem : public Problem

{
public:

Generated

by Doxygen



The spatially-adaptive solution of the azimuthally Fourier-decomposed equations of 3D time-harmonic

4

linear elasticity on unstructured meshes

/// Constructor: Pass number of elements in r and z directions
/// and boundary locations
FourierDecomposedTimeHarmonicLinearElasticityProblem(

const unsigned &nr, const unsigned &nz,

const double &rmin, const double& rmax,

const double &zmin, const double& zmax);

/// Update before solve is empty
void actions_before_newton_solve () {}

/// Update after solve is empty
void actions_after_newton_solve () {}

/// Delete traction elements
void delete_traction_elements();

/// Helper function to complete problem setup
void complete_problem_setup();

/// Actions before adapt: Wipe the mesh of traction elements
void actions_before_adapt ()
{

// Kill the traction elements and wipe surface mesh
delete_traction_elements () ;

// Rebuild the Problem’s global mesh from its various sub-meshes
rebuild_global_mesh();
}

/// Actions after adapt: Rebuild the mesh of traction elements
void actions_after_adapt ()
{
// Create traction elements from all elements that are
// adjacent to FSI boundaries and add them to surface meshes
assign_traction_elements();

// Rebuild the Problem’s global mesh from its various sub-meshes
rebuild_global_mesh () ;

// Complete problem setup
complete_problem_setup () ;
}

/// Doc the solution
void doc_solution (DocInfo& doc_info);

private:

/// Allocate traction elements on the bottom surface
void assign_traction_elements();

#ifdef ADAPTIVE

/// Pointer to the bulk mesh
RefineableTriangleMesh<ELEMENT>* Bulk_mesh_pt;
#else

/// Pointer to the bulk mesh
Meshx Bulk_mesh_pt;
#endif

/// Pointer to the mesh of traction elements
Mesh* Surface_mesh_pt;
}; // end_of_problem_class

//===start_of_constructor
/// Problem constructor: Pass number of elements in coordinate
/// directions and size of domain.

//
template<class ELEMENT>
FourierDecomposedTimeHarmonicLinearElasticityProblem<ELEMENT>: :
FourierDecomposedTimeHarmonicLinearElasticityProblem
(const unsigned &nr, const unsigned é&nz,
const double &rmin, const double& rmax,
const double &zmin, const double& zmax)
{
#ifdef ADAPTIVE
// The boundary is bounded by four distinct boundaries, each
// represented by its own polyline
Vector<TriangleMeshCurveSectionx> boundary_polyline_pt (4);

// Vertex coordinates on boundary
Vector<Vector<double> > bound_coords(2);
bound_coords[0] .resize (2);
bound_coords[1].resize(2);

// Horizontal bottom boundary
bound_coords[0] [0]=rmin;

Generated by Doxygen



1.3 Code listing

bound_coords[0] [1]=zmin;
bound_coords[1] [0]=rmax;
bound_coords[1] [1]=zmin;

// Build the boundary polyline
unsigned boundary_id=0;
boundary_polyline_pt[0]=new TriangleMeshPolyLine (bound_coords, boundary_id);

// Vertical outer boundary
bound_coords[0] [0]=rmax;
bound_coords[0] [1]=zmin;
bound_coords[1] [0]=rmax;
bound_coords[1] [1]=zmax;

// Build the boundary polyline
boundary_id=1;
boundary_polyline_pt[l]=new TriangleMeshPolyLine (bound_coords, boundary_id);

// Horizontal top boundary
bound_coords[0] [0]=rmax;
bound_coords [0] [1]=zmax;
bound_coords[1] [0]=rmin;
bound_coords[1l] [1]=zmax;

// Build the boundary polyline
boundary_id=2;
boundary_polyline_pt[2]=new TriangleMeshPolyLine (bound_coords, boundary_id) ;

// Vertical inner boundary
bound_coords[0] [0]=rmin;
bound_coords [0] [1]=zmax;
bound_coords[1] [0]=rmin;
bound_coords[1] [1]=zmin;

// Build the boundary polyline
boundary_id=3;
boundary_polyline_pt[3]=new TriangleMeshPolyLine (bound_coords, boundary_id) ;

// Pointer to the closed curve that defines the outer boundary
TriangleMeshClosedCurve* closed_curve_pt=
new TriangleMeshPolygon (boundary_polyline_pt);

// Use the TriangleMeshParameters object for helping on the manage of the
// TriangleMesh parameters

TriangleMeshParameters triangle_mesh_parameters (closed_curve_pt);

// Specify the maximum area element

double uniform_element_area=0.2;

triangle_mesh_parameters.element_area() = uniform_element_area;

// Create the mesh

Bulk_mesh_pt=new RefineableTriangleMesh<ELEMENT> (triangle_mesh_parameters) ;
// Set error estimator

Bulk_mesh_pt->spatial_error_estimator_pt ()=new Z2ErrorEstimator;
#else

//Now create the mesh

Bulk_mesh_pt = new RectangularQuadMesh<ELEMENT> (nr,nz,rmin, rmax, zmin, zmax) ;
#endif

//Create the surface mesh of traction elements
Surface_mesh_pt=new Mesh;
assign_traction_elements();

// Complete problem setup

complete_problem_setup () ;

// Add the submeshes to the problem

add_sub_mesh (Bulk_mesh_pt) ;

add_sub_mesh (Surface_mesh_pt);

// Now build the global mesh

build_global_mesh () ;

// Assign equation numbers

cout « assign_eqn_numbers () « " equations assigned" « std::endl;
} // end of constructor
//===start_of_complete_problem_setup
/// Complete problem setup

//
template<class ELEMENT>
void FourierDecomposedTimeHarmonicLinearElasticityProblem<ELEMENT>: :
complete_problem_setup ()

{

// Set the boundary conditions for this problem: All nodes are

// free by default -- just pin & set the ones that have Dirichlet
// conditions here

// Pin displacements everywhere apart from boundaries 1 and 3

/7= —- - T

for (unsigned ibound=0; ibound<3; ibound=ibound+2)

{
unsigned num_nod=Bulk_mesh_pt->nboundary_node (ibound) ;
for (unsigned inod=0; inod<num_nod; inod++)

{

Generated by Doxygen



The spatially-adaptive solution of the azimuthally Fourier-decomposed equations of 3D time-harmonic
6 linear elasticity on unstructured meshes

// Get pointer to node
Node* nod_pt=Bulk_mesh_pt->boundary_node_pt (ibound, inod) ;

// Pinned in r, z and theta
nod_pt->pin(0) ;nod_pt->pin(l) ;nod_pt->pin(2);
nod_pt->pin(3);nod_pt->pin(4);nod_pt->pin(5);

// Set the displacements
nod_pt->set_value(0,0.0
nod_pt->set_value (1,0
nod_pt->set_value (2,0
nod_pt->set_value (
(
(

7

)
)i
)i
)
)
)

’ 7

3,0
4,0
5,0

’

nod_pt->set_value ;
nod_pt—->set_value
}
}
// Complete the problem setup to make the elements fully functional
// Loop over the elements
unsigned n_el = Bulk_mesh_pt->nelement () ;
for (unsigned e=0;e<n_el;e++)
{
// Cast to a bulk element
ELEMENT *el_pt = dynamic_cast<ELEMENTx> (Bulk_mesh_pt->element_pt (e));
// Set the pointer to Poisson’s ratio

.0
.0
.0
.0
.0

;

el _pt->nu_pt () = &Global_ Parameters::Nu;

// Set the pointer to Fourier wavenumber

el_pt->fourier_wavenumber_pt () = &Global Parameters::Fourier_wavenumber;
// Set the pointer to non-dim Young’s modulus

el_pt->youngs_modulus_pt () = &Global_ Parameters::E;

// Set the pointer to square of the angular frequency
el_pt->omega_sqg_pt () = &Global_Parameters::Omega_sqg;

}// end loop over elements
// Loop over the traction elements
unsigned n_traction = Surface_mesh_pt->nelement () ;
for (unsigned e=0;e<n_traction;e++)
{
// Cast to a surface element
TimeHarmonicFourierDecomposedLinearElasticityTractionElement<ELEMENT>x
el_pt =
dynamic_cast<TimeHarmonicFourierDecomposedLinearElasticityTractionElement
<ELEMENT>#* > (Surface_mesh_pt->element_pt (e));

// Set the applied traction
el_pt->traction_fct_pt() = &Global_Parameters::boundary_traction;

}// end loop over traction elements

}

//===start_of_traction
/// Make traction elements along the boundary r=rmin
//

template<class ELEMENT>
void FourierDecomposedTimeHarmonicLinearElasticityProblem<ELEMENT>: :
assign_traction_elements ()
{
unsigned bound, n_neigh;
// How many bulk elements are next to boundary 3
bound=3;
n_neigh = Bulk_mesh_pt->nboundary_element (bound);
// Now loop over bulk elements and create the face elements
for (unsigned n=0;n<n_neigh;n++)
{
// Create the face element
FiniteElement *traction_element_pt
= new TimeHarmonicFourierDecomposedLinearElasticityTractionElement<ELEMENT>
(Bulk_mesh_pt->boundary_element_pt (bound, n),
Bulk_mesh_pt->face_index_at_boundary (bound,n)) ;

// Add to mesh
Surface_mesh_pt->add_element_pt (traction_element_pt);
}

} // end of assign_traction_elements

//===start_of_delete_traction
/// Delete traction elements
//

template<class ELEMENT>
void FourierDecomposedTimeHarmonicLinearElasticityProblem<ELEMENT>: :
delete_traction_elements ()
{
// How many surface elements are in the surface mesh
unsigned n_element = Surface_mesh_pt->nelement () ;

// Loop over the surface elements
for (unsigned e=0;e<n_element;e++)
{
// Kill surface element
delete Surface_mesh_pt->element_pt (e);

Generated by Doxygen



1.4 Source files for this tutorial

}

// Wipe the mesh
Surface_mesh_pt->flush_element_and_node_storage();
} // end of delete_traction_elements
//==start_of_doc_solution
/// Doc the solution

//
template<class ELEMENT>
void FourierDecomposedTimeHarmonicLinearElasticityProblem<ELEMENT>: :
doc_solution (DocInfo& doc_info)

{

ofstream some_file;

char filename[100];

// Number of plot points
unsigned npts=5;

// Output solution
sprintf (filename, "%s/soln.dat",doc_info.directory().c_str());
some_file.open(filename) ;
Bulk_mesh_pt->output (some_file, npts);
some_file.close();
// Output norm of solution (to allow validation of solution even
// if triangle generates a slightly different mesh)
sprintf (filename, "%$s/norm.dat", doc_info.directory().c_str());
some_file.open(filename) ;
double norm=0.0;
unsigned nel=Bulk_mesh_pt->nelement () ;
for (unsigned e=0;e<nel;e++)
{
double el _norm=0.0;
Bulk_mesh_pt->compute_norm(el_norm) ;
norm+=el_norm;
}
some_file « norm « std::endl;
} // end_of_doc_solution

//===start_of_main
/// Driver code
//

int main(int argc, charx argv[])

{

// Number of elements in r-direction
unsigned nr=10;

// Number of elements in z-direction (for (approximately) square elements)
unsigned nz=unsigned(double (nr)*Global_Parameters::Lz/Global_Parameters::Lr);
// Set up doc info

DocInfo doc_info;

// Set output directory
doc_info.set_directory ("RESLT") ;
#ifdef ADAPTIVE
// Set up problem
FourierDecomposedTimeHarmonicLinearElasticityProblem
<ProjectableTimeHarmonicFourierDecomposedLinearElasticityElement
<TTimeHarmonicFourierDecomposedLinearElasticityElement<3> > >
problem(nr,nz,Global_Parameters::rmin,Global_ Parameters::rmax,
Global_Parameters::zmin,Global_Parameters::zmax) ;
// Solve
unsigned max_adapt=3;
problem.newton_solve (max_adapt) ;

#else
// Set up problem
FourierDecomposedTimeHarmonicLinearElasticityProblem
<QTimeHarmonicFourierDecomposedLinearElasticityElement<3> >
problem(nr,nz,Global_Parameters::rmin,Global_Parameters::rmax,
Global_Parameters::zmin,Global_Parameters::zmax);

// Solve
problem.newton_solve();

#endif

// Output the solution
problem.doc_solution (doc_info) ;

} // end _of main

1.4 Source files for this tutorial

» The source files for this tutorial are located in the directory:

Generated by Doxygen



The spatially-adaptive solution of the azimuthally Fourier-decomposed equations of 3D time-harmonic
8 linear elasticity on unstructured meshes

demo_drivers/time_harmonic_fourier_decomposed_linear_«
elasticity/cylinder/

* The driver code is:

demo_drivers/time_harmonic_fourier_decomposed_linear_«
elasticity/cylinder/pressure_loaded_cylinder.cc

1.5 PDF file

A pdf version of this document is available.

Generated by Doxygen


../../../../demo_drivers/time_harmonic_fourier_decomposed_linear_elasticity/cylinder/pressure_loaded_cylinder.cc
../../../../demo_drivers/time_harmonic_fourier_decomposed_linear_elasticity/cylinder/pressure_loaded_cylinder.cc

	1 The spatially-adaptive solution of the azimuthally Fourier-decomposed equations of 3D time-harmonic linear elasticity on unstructured meshes
	1.1 The test problem
	1.2 The numerical solution
	1.3 Code listing
	1.4 Source files for this tutorial
	1.5 PDF file


