Chapter 1

The azimuthally Fourier-decomposed equations of
3D time-harmonic linear elasticity

The aim of this tutorial is to demonstrate the solution of the time-harmonic equations of linear elasticity in cylindrical
polar coordinates, using a Fourier decomposition of the solution in the azimuthal direction. These equations are
useful to describe forced, time-harmonic, non-axisymmetric oscillations of axisymmetric elastic bodies.

Acknowledgement: This implementation of the equations and the documentation were developed jointly with
Robert Harter (Thales Underwater Systems Ltd) with financial support from a KTA Secondment grant from
University of Manchester's EPSRC-funded Knowledge Transfer Account.

1.1 Theory

Consider a three-dimensional, axisymmetric body (of density p, Young's modulus £, and Poisson's ratio), occupy-
ing the region D whose boundary is 9D. Assuming that the body performs time-harmonic oscillations of frequency
of w, we use cylindrical coordinates (r*, 6, z*). The equations of time-harmonic linear elasticity can then be written
as

V* 1% + pF* = —pwiu*,
where V* = (3%, % %, 5%), and the stresses, body force and displacements are given by Re{7*(r*, 6, z*)e ="},
Re{F*(r*,0,2*)e "} and Re{u*(r*,0, z*)e ! } respectively. Note that here and henceforth, the super-
script asterisk notation is used to distinguish dimensional quantities from their non-dimensional counterparts where
required. (The coordinate 6 is by definition dimensionless, and so we do not use an asterisk when referencing this
parameter).
The body is subject to imposed time-harmonic displacements u* along 0D, and subject to an imposed traction
7* along 0D,, where 0D = 0D, U 0D, so that

u*=u*on 0Dy, T*-n=7F*ondD,

where n is the outer unit normal on the boundary.
The stresses and displacements are related by the constitutive equations

E 14 1 T
* * L)l - *, % *, %
T 1+1/<121/(V u)+2(Vu + V*u)>,

Generated by Doxygen

2 The azimuthally Fourier-decomposed equations of 3D time-harmonic linear elasticity

where V*u*" represents the transpose of V*u*. Note that in cylindrical coordinates, the second-order tensor
V*u* is given by

ou, 1 Ou up ou,

T 2 r __ 26 T

gri r* 030* r* gz’;

®pak U 1 Oug Uy Uy
Viu ar* r* 00 —t r* 9z*
ou’ 1 Ou} ou’

or* r* 00 Oz*

and V* - u™ is equal to the trace of this matrix.
We non-dimensionalise the equations, using a problem specific reference length, £, and a timescale 7 = 1/w, and
use Young's modulus to non-dimensionalise the body force and the stress tensor:

™ =FET, r*=Lr, Z*=Lz
u* = Lu, F*:EF, t" =Tt

The non-dimensional form of the linear elasticity equations is then given by

V-1+F=-Q%, (1)

T:Iiy(l_l/zy(V-u)l—k;(Vu—FVuT)), (2)

and the non-dimensional parameter

[p
Q_— h—
Lw E

is the ratio of the elastic body's intrinsic timescale, £,/%, to the problem-specific timescale, 7 = 1/w, that we
used to non-dimensionalise time. The boundary conditions are

u=1aon 0Dy, T-n=7ondD,.

Given the assumed axisymmetry of the body we expand all quantities in a Fourier series in the azimuthal coordinate
0 by writing,

oo o0

u(r,0,z) = Z u™(r,2)e™ F(r,0,z) = Z F™(r,2)é™ 7(r,0,2) = Z 7 (r, 2)e™?,

n=—oo n=—oo n—=—oo

This decomposition allows us to remove the 6-dependence from the equations by writing % = in(, where (
represents any physical parameter in the problem. Furthermore, since the governing equations are linear, we can
solve for each Fourier component separately and simply specify the Fourier wavenumber n as a parameter.

1.2 Implementation

Within oomph—11ib, the non-dimensional version of the two-dimensional Fourier-decomposed equations (1) with
the constitutive equations (2) are implemented in the TimeHarmonicFourierDecomposedLinear+«
ElasticityEquations equations class. Following our usual approach, discussed in the (Not-«
So—)Quick Guide, this equation class is then combined with a geometric finite element to form a fully-
functional finite element. For instance, the combination of the TimeHarmonicFourierDecomposed«
LinearElasticityEquations class with the geometric finite element QElement <2, 3> yields a nine-
node quadrilateral element. As usual, the mapping between local and global (Eulerian) coordinates within an
element is given by,

Generated by Doxygen

../../../quick_guide/html/index.html
../../../quick_guide/html/index.html

1.3 The test problem 3

N(E)
j=1

where the coordinates are enumerated as x1 = r, o = 2. N(E) is the number of nodes in the element, XZ-(jE) is
the i-th global (Eulerian) coordinate (enumerated as above) of the j-th Node in the element, and the v; are the
element's shape functions, defined in the geometric finite element.

We allow for the presence of damping by allowing the constitutive parameters and forcing frequency to be complex-
valued. The three components of the displacement field therefore have real and imaginary parts and we store the
six real-valued nodal unknowns in the order Re{u!™}, Re{u™}, Re{u("}, Im{u{™}, Im{ul™}, Im{u"} and
use the shape functions to interpolate the displacements as

NE)
T T
Jj=1

where Ui(jE) is the ¢-th displacement component (enumerated as indicated above) at the j-th Node in the element.

1.3 The test problem

The governing equations are fairly complicated and it is difficult to come up with non-trivial analytical solutions
that could be used to validate the implementation. We therefore construct an analytical solution by postulating a
displacement field and providing a body force that makes this a solution of the equations.

Specifically we consider the time-harmonic non-axisymmetric deformation of an annular elastic body that occupies
the region Tmin S r S Tmaxy Zmin S z S Zmax 0 S 0 S 2m.

The displacement field

Uy r3cos z
ugn) r3sin z

is an exact solution of the governing equations if the body is subject to a body force

—7r(2inz3X + cos 2{(8 + 3r)A — (n? — 16 +r(r — 3))u + r2A%})
FM = [—p{823u — n223(\ + 2p) + r2(23A2 + 6p2) + incos z(4 +)X+ (6 +)p)} |, (4)
rsin z{(n? — Np +4r(A + p) + r2(A + 2 — A?)} — 3inr?22 (X + p)

where A = v/((1 + v)(1 — 2v)) and ¢ = 1/(2(1 + v)) are the non-dimensional Lamé parameters (non-
dimensionalised on F). The body is subject to a non-zero traction on all four boundaries; for example, on the
inner boundary (where r = ryiy) the traction is

» —6ripcos 2 — A(inrg, 2% + i (4 + rin) cos 2)
7’;371 = 7'(") (Tmina Z) : (_er) = 7#’7%211111(2'2‘3 + incos Z) . (5)

—pr2.sin 2(3 = Tmin)

We choose to set this traction as a boundary condition, whilst pinning the displacements on the remaining bound-
aries where we impose a prescribed displacement according to (3).

1.4 Results

The figures below show plots of Re{u!™}, Re{u{™} and Re{u{"} for a Fourier wavenumber of n = 3 and
geometric parameters rmin = 0.1, "max = 1.1, Zmin = 0.3, Zmax = 2.3. We set Q2 = 10 + 5i, corresponding to
an exponentially growing time-periodic forcing; £ = 1 4 0.01i, corresponding to a slightly dissipative material (see
Comments); and v = 0.3 + 0.05i. The imaginary part of the solution is small (though not identically equal to zero)
but it converges to zero under mesh refinement; see Exercises .

Generated by Doxygen

4 The azimuthally Fourier-decomposed equations of 3D time-harmonic linear elasticity

('njey

Figure 1.1 Computed (red) and exact (green) solution for real part of the radial displacement component.

Figure 1.2 Computed (red) and exact (green) solution for real part of the axial displacement component.

Figure 1.3 Computed (red) and exact (green) solution for real part of the azimuthal displacement
component.

1.5 Global parameters and functions

As usual, we define all non-dimensional parameters in a namespace. In this namespace, we also define the (Fourier-
decomposed) body force, the traction to be applied on boundary 3, and the exact solution. Note that, consistent
with the enumeration of the unknowns, discussed above, the order of the components in the functions that specify
the body force and the surface traction is (r, z,).

//===start_of_namespac
/// Namespace for global parameters
//

namespace Global_Parameters

{
/// Define Poisson’s ratio Nu
std::complex<double> Nu(0.3,0.05);

/// Define the non-dimensional Young’s modulus
std::complex<double> E(1.0,0.01);

// Lame parameters

std::complex<double> lambda = ExNu/ (1.0+Nu)/(1.0-2.0%Nu);
std::complex<double> mu = E/2.0/(1.0+Nu);

/// Define Fourier wavenumber
int Fourier_wavenumber = 3;

Generated by Doxygen

1.6 The driver code 5

/// Define the non-dimensional square angular frequency of
/// time-harmonic motion
std::complex<double> Omega_sqg (10.0,5.0);

/// Length of domain in r direction
double Lr = 1.0;

/// Length of domain in z-direction
double Lz = 2.0;
// Set up min & max (r,z) coordinates

double rmin = 0.1;
double zmin = 0.3;
double rmax = rmin+Lr;
double zmax = zmin+Lz;

/// Define the imaginary unit
const std::complex<double> I(0.0,1.0);

/// The traction function at r=rmin: (t_r, t_z, t_theta)
void boundary_traction(const Vector<double> &x,
const Vector<double> &n,
Vector<std::complex<double> > &result)

{

result[0] = -6.0xpow(x[0],2)muxcos (x[1])~-
lambdax (Ixdouble (Fourier_wavenumber) xpow (x[0], 2)*pow(x[l],3)+
(4.0xpow (x[0],2)+pow (x[0],3))*cos (x[1])
result[1l] = -mux* (3.0%pow(x[0],2)-pow(x[0],))*51n(x[l]);
result[2] = -muxpow(x[0],2)* (Z*pow([1] 3)+Ixdouble (Fourier_wavenumber) %
cos(x[1]))

/// The body force function; returns vector of complex doubles
/// in the order (b_r, b_z, b_theta)
void body_force (const Vector<double> &x,
Vector<std::complex<double> > &result)
{
result[0] =
x[0]%(-2.0+Ixlambda*double (Fourier_wavenumber) xpow (x[1],3)-cos (x[1])
(lambdax (8.0+3.0xx[0]) —
mu* (pow (double (Fourier_wavenumber), 2)
-16.0+x[0]*(x[0]-3.0))+pow(x[0],2)*Omega_sq)) ;
result[1l] =
x[0]*sin(x[1]) » (mux (pow (double (Fourier_wavenumber),2)-9.0)+
4.0%x[0]+ (lambda+mu) +pow (x[0], 2) *
(lambda+2.0+mu-Omega_sq)) —
3.0+Ixdouble (Fourier_wavenumber) xpow (x[0],2) «pow (x[1],2) * (lambda+mu) ;
result[2] =
-x[0]*(8.0xmuxpow(x[1], 3) —pow (double (Fourier_wavenumber), 2) spow (x[1],3)
(lambda+2.0+mu) +pow (x[0],2) x (pow (x[1], 3) xOmega_sqg+6.0xmuxx[1]) +
Ixcos (x[1]) *double (Fourier_wavenumber) *
(lambdax* (4.0+x[0])+mux (6.0+x[0])));
}

/// The exact solution in a flat-packed vector:

// 0: u_rlreal]l, 1: u_z([reall,..., 5: u_thetalimag]

void exact_solution (const Vector<double> &x,
Vector<double> &u)

{

ul0] = pow(x[0],3)~*cos(x[1]);
ull] = pow(x[0],3)*sin(x[1]);
ul2] = pow(x[0],3)*pow(x[1],3);
ul3] = 0.0;

ufl4] = 0.0;

ul[5] = 0.0;

}

} // end_of namespace

1.6 The driver code

We start by setting the number of elements in each of the two coordinate directions before creating a DocInfo
object to store the output directory.

//===start_of_main
/// Driver code
//

int main(int argc, charx argv[])

{

// Number of elements in r-direction
unsigned nr=5;

// Number of elements in z-direction (for (approximately) square elements)
unsigned nz=unsigned(double (nr)*Global_Parameters::Lz/Global_Parameters::Lr);
// Set up doc info

Generated by Doxygen

6 The azimuthally Fourier-decomposed equations of 3D time-harmonic linear elasticity

DocInfo doc_info;

// Set output directory
doc_info.set_directory ("RESLT") ;

We build the problem using two-dimensional QTimeHarmonicFourierDecomposedLinearElasticity+«

Elements, solve using the Problem: :newton_solve () function, and document the results.
// Set up problem
FourierDecomposedTimeHarmonicLinearElasticityProblem
<QTimeHarmonicFourierDecomposedLinearElasticityElement<3> >
problem(nr,nz,Global_Parameters::rmin,Global_Parameters::rmax,
Global_Parameters::zmin,Global_Parameters::zmax) ;

// Solve
problem.newton_solve () ;

// Output the solution
problem.doc_solution (doc_info);

} // end of main

1.7 The problem class

The Problem class is very simple. As in other problems with Neumann boundary conditions, we provide separate
meshes for the "bulk" elements and the face elements that apply the traction boundary conditions. The latter are
attached to the relevant faces of the bulk elements by the function assign_traction_elements ().

//===start_of_problem_class
/// Class to validate time harmonic linear elasticity (Fourier
/// decomposed)

//
template<class ELEMENT>

class FourierDecomposedTimeHarmonicLinearElasticityProblem : public Problem
{

public:

/// Constructor: Pass number of elements in r and z directions
/// and boundary locations
FourierDecomposedTimeHarmonicLinearElasticityProblem(

const unsigned &nr, const unsigned &nz,

const double &rmin, const double& rmax,

const double &zmin, const double& zmax);

/// Update before solve is empty
void actions_before_newton_solve() {}

/// Update after solve is empty
void actions_after_newton_solve() {}

/// Doc the solution
void doc_solution(DocInfo& doc_info);

private:

/// Allocate traction elements on the bottom surface
void assign_traction_elements();

/// Pointer to the bulk mesh
Mesh* Bulk_mesh_pt;

/// Pointer to the mesh of traction elements
Mesh* Surface_mesh_pt;
}; // end of problem class

1.8 The problem constructor

We begin by building the meshes and pin the displacements on the appropriate boundaries. Recall that the order of
the six real unknowns stored at the nodes is (Re{u&”)}, Re{u™}, Re{ul™}, Im{ui™}, Im{ul™}, Im{u"}).

//===start_of_constructor
/// Problem constructor: Pass number of elements in coordinate
/// directions and size of domain.
//
template<class ELEMENT>
FourierDecomposedTimeHarmonicLinearElasticityProblem<ELEMENT>: :
FourierDecomposedTimeHarmonicLinearElasticityProblem

(const unsigned &nr, const unsigned &nz,

const double &rmin, const double& rmax,

const double &zmin, const double& zmax)

{

//Now create the mesh

Bulk_mesh_pt = new RectangularQuadMesh<ELEMENT> (nr,nz,rmin, rmax, zmin, zmax) ;
//Create the surface mesh of traction elements

Generated by Doxygen

1.8 The problem constructor 7

Surface_mesh_pt=new Mesh;
assign_traction_elements();

// Set the boundary conditions for this problem: All nodes are
// free by default -- just pin & set the ones that have Dirichlet
// conditions here

// storage for nodal position

Vector<double> x(2);

// Storage for prescribed displacements
Vector<double> u(6);

// Now set displacements on boundaries 0 (z=zmin),

// 1 (r=rmax) and 2 (z=zmax)

(unsigned ibound=0; ibound<=2; ibound++)

unsigned num_nod=Bulk_mesh_pt->nboundary_node (ibound) ;
(unsigned inod=0; inod<num_nod; inod++)
{
// Get pointer to node
Node* nod_pt=Bulk_mesh_pt->boundary_node_pt (ibound, inod) ;

// get r and z coordinates
x[0]=nod_pt->x(0);
x[1]=nod_pt->x(1);

// Pinned in r, z and theta
nod_pt->pin(0) ;nod_pt->pin(1l) ;nod_pt->pin(2);
nod_pt->pin(3);nod_pt->pin(4);nod_pt->pin(5);

// Compute the value of the exact solution at the nodal point
Vector<double> u(6);
Global_Parameters::exact_solution(x,u);

// Set the displacements
nod_pt->set_value (0,ul0]);
(
nod_pt->set_value (2
nod_pt->set_value (3,
nod_pt->set_value (4
nod_pt->set_value (5
}

} // end_of_loop_over_boundary_nodes
Next we loop over the bulk mesh elements and assign the constitutive parameters, the body force, the Fourier

wavenumber and the non-dimensional frequency to each element.

// Complete the problem setup to make the elements fully functional

// Loop over the elements

unsigned n_el = Bulk_mesh_pt->nelement ();

for (unsigned e=0;e<n_el;e++)
{
// Cast to a bulk element
ELEMENT xel_pt = dynamic_cast<ELEMENTx> (Bulk_mesh_pt->element_pt (e));
// Set the body force

el_pt->body_force_fct_pt () = &Global_Parameters::body_force;

// Set the pointer to Poisson’s ratio

el _pt->nu_pt () = &Global_Parameters::Nu;

// Set the pointer to Fourier wavenumber

el_pt->fourier_wavenumber_pt () = &Global Parameters::Fourier_wavenumber;
// Set the pointer to non-dim Young’s modulus

el _pt->youngs_modulus_pt () = &Global_ Parameters::E;

// Set the pointer to square of the angular frequency

el _pt->omega_sqg_pt () = &Global_Parameters::0mega_sq;

}// end loop over elements

We then loop over the traction elements and specify the applied traction.
// Loop over the traction elements
unsigned n_traction = Surface_mesh_pt->nelement();
r(unsigned e=0;e<n_traction;e++)
{
// Cast to a surface element
TimeHarmonicFourierDecomposedLinearElasticityTractionElement<ELEMENT>x
el_pt =
dynamic_cast<TimeHarmonicFourierDecomposedLinearElasticityTractionElement
<ELEMENT>* > (Surface_mesh_pt->element_pt (e));

// Set the applied traction
el_pt->traction_fct_pt() = &Global_Parameters::boundary_traction;

}// end loop over traction elements
The two sub-meshes are now added to the problem and a global mesh is constructed before the equation numbering

scheme is set up, using the function assign_eqn_numbers ().
// Add the submeshes to the problem
add_sub_mesh (Bulk_mesh_pt);
add_sub_mesh (Surface_mesh_pt) ;
// Now build the global mesh

Generated by Doxygen

8 The azimuthally Fourier-decomposed equations of 3D time-harmonic linear elasticity

build_global_mesh();

// Assign equation numbers

cout « assign_eqgn_numbers () « " equations assigned" « std::endl;
} // end of constructor

1.9 The traction elements

We create the face elements that apply the traction to the boundary r = rpyin.

//===start_of_traction
/// Make traction elements along the boundary r=rmin
!/

template<class ELEMENT>
void FourierDecomposedTimeHarmonicLinearElasticityProblem<ELEMENT>: :
assign_traction_elements ()
{
unsigned bound, n_neigh;
// How many bulk elements are next to boundary 3
bound=3;
n_neigh = Bulk_mesh_pt->nboundary_element (bound) ;
// Now loop over bulk elements and create the face elements
for (unsigned n=0;n<n_neigh;n++)
{
// Create the face element
FiniteElement xtraction_element_pt
= new TimeHarmonicFourierDecomposedLinearElasticityTractionElement<ELEMENT>
(Bulk_mesh_pt->boundary_element_pt (bound,n),
Bulk_mesh_pt->face_index_at_boundary (bound,n)) ;

// Add to mesh
Surface_mesh_pt->add_element_pt (traction_element_pt);

}

} // end of assign_traction_elements

1.10 Post-processing

As expected, this member function documents the computed solution.
//==start_of_doc_solution
/// Doc the solution

//
template<class ELEMENT>
void FourierDecomposedTimeHarmonicLinearElasticityProblem<ELEMENT>: :
doc_solution (DocInfo& doc_info)

{

ofstream some_file;

char filename[100];

// Number of plot points
unsigned npts=5;

// Output solution

sprintf (filename, "%s/soln.dat",doc_info.directory().c_str());

some_file.open (filename) ;

Bulk_mesh_pt->output (some_file, npts);

some_file.close();

// Output exact solution

sprintf (filename, "%s/exact_soln.dat",doc_info.directory().c_str());

some_file.open (filename) ;

Bulk_mesh_pt->output_fct (some_file, npts,

Global_Parameters::exact_solution);
some_file.close();

// Doc error

double error=0.0;

double norm=0.0;

sprintf (filename, "$s/error.dat",doc_info.directory () .c_str());

some_file.open(filename) ;

Bulk_mesh_pt->compute_error (some_file,
Global_Parameters::exact_solution,
error,norm) ;

some_file.close();

// Doc error norm:

cout « "\nNorm of error: " « sqrt(error) « std::endl;

cout « "Norm of solution: " « sgrt(norm) « std::endl « std::endl;

cout « std::endl;

} // end of doc_solution

Generated by Doxygen

1.11 Comments and Exercises 9

1.11 Comments and Exercises

1.11.1 Comments

» Given that we non-dimensionalised all stresses on Young's modulus it seems odd that we provide the op-
tion to specify a non-dimensional Young's modulus via the member function TimeHarmonicFourier«
DecomposedLinearElasticityEquations: :youngs_modulus_pt (). The explanation for
this is that this function specifies the ratio of the material's actual Young's modulus to the Young's modu-
lus used in the non-dimensionalisation of the equations. The capability to specify such ratios is important
in problems where the elastic body is made of multiple materials with different constitutive properties. If the
body is made of a single, homogeneous material, the specification of the non-dimensional Young's modulus
is not required — it defaults to 1.0. In the example considered above, the specification of the non-dimensional
Young's modulus as 1 + 0.01i
creates a small amount of damping in the material whose actual stiffness is still characterised by the (real-
valued and dimensional) Young's modulus used to non-dimensionalise the equations.

» Note that we also allow Poisson's ratio (whose specification is required) to be complex-valued. We are not
aware of any meaningful physical interpretation of non-real Poisson ratios but provide this option because it
appears to allow a better characterisation of some materials.

1.11.2 Exercises

» Confirm that the specification of Poisson's ratio is required: What happens if you comment out its assignment
in the problem constructor?

» Confirm that the small imaginary part of the computed displacement field for the test problem goes to zero
under mesh refinement.

» Change the problem setup to the (less contrived) case where the deformation of the cylinder is driven by a
time-periodic pressure load acting on the inside while its upper and lower ends are held at a fixed position.
(You can cheat —there's another tutorial that shows you how to do it...).

1.12 Source files for this tutorial
» The source files for this tutorial are located in the directory:

demo_drivers/time_harmonic_fourier_decomposed_linear_«
elasticity/cylinder/

* The driver code is:

demo_drivers/time_harmonic_fourier_decomposed_linear_«
elasticity/cylinder/cylinder.cc

1.13 PDF file

A pdf version of this document is available.

Generated by Doxygen

../../adaptive_pressure_loaded_cylinder/html/index.html
../../../../demo_drivers/time_harmonic_fourier_decomposed_linear_elasticity/cylinder/cylinder.cc
../../../../demo_drivers/time_harmonic_fourier_decomposed_linear_elasticity/cylinder/cylinder.cc

	1 The azimuthally Fourier-decomposed equations of 3D time-harmonic linear elasticity
	1.1 Theory
	1.2 Implementation
	1.3 The test problem
	1.4 Results
	1.5 Global parameters and functions
	1.6 The driver code
	1.7 The problem class
	1.8 The problem constructor
	1.9 The traction elements
	1.10 Post-processing
	1.11 Comments and Exercises
	1.11.1 Comments
	1.11.2 Exercises

	1.12 Source files for this tutorial
	1.13 PDF file

