
Chapter 1

Example problem: Spatially adaptive solution of the
2D unsteady heat equation with flux boundary
conditions in a moving domain: ALE methods.

In this example we consider the solution of the unsteady heat equation in a domain with moving boundaries. We
demonstrate that the presence of moving boundaries only requires trivial changes to driver codes for corresponding
fixed-mesh computations.

Generated by Doxygen

2
Example problem: Spatially adaptive solution of the 2D unsteady heat equation with flux boundary

conditions in a moving domain: ALE methods.

The two-dimensional unsteady heat equation with flux boundary conditions in a moving domain.

Solve
2∑

i=1

∂2u

∂x2i
=
∂u

∂t
+ f (x1, x2, t) , (1)

in the domain D , bounded by the coordinate axes and the time-dependent ellipse

rellipse(ξ, t) =

((
a+ â sin(2πt/T̂)

)
cos(ξ)(

b+ b̂ sin(2πt/T̂)
)
sin(ξ)

)
, (2)

subject to Neumann boundary conditions,

∂u

∂n

∣∣∣∣
∂DNeumann

= − ∂u

∂x2

∣∣∣∣
∂DNeumann

= g0, (3)

along the horizontal domain boundary ∂DNeumann = {(x1, x2)|x1 ∈ [0, 1], x2 = 0} , and to Dirichlet boundary
conditions,

u|∂DDirichlet
= h0, (4)

elsewhere.

Figure 1.1 Sketch of the time-dependent domain and the boundary conditions.

The initial conditions are given by

u(x1, x2, t = 0) = k0(x1, x2), (5)

where the functions f, g0, h0 and k0 are given.

Generated by Doxygen

3

We choose the functions f, g0, h0 and k0 so that

u0(x1, x2, t) = tanh

[
1− α

(
tanΦ

(
x1 − β tanh[γ cos (2πt)]

)
− x2

)]
(6)

is the exact solution.

The solution represents the "usual" tanh profile, whose steepness is controlled by the parameter α so that for
α ≫ 1 the solution approaches a step. The step is oriented at an angle Φ against the x1− axis and its position
varies periodically. The parameter β controls the amplitude of the step's lateral displacement, while γ determines
the rate at which its position changes. For γ ≫ 1 , the step remains stationary for most of the period and then
translates rapidly parallel to the x1− axis, making this a very challenging problem.

The figure below shows a snapshot of the animated solution, obtained from the spatially adaptive simula-
tion discussed below, for the parameter values α = 10, Φ = 45o, β = −0.3, γ = 5.

Figure 1.2 Snapshot of the solution.

The mesh adaptation in response to the translation of the step can be seen more clearly in this contour plot, taken
from another animation of the solution.

Generated by Doxygen

../figures/step_soln.avi
../figures/unsteady_heat_contour.avi

4
Example problem: Spatially adaptive solution of the 2D unsteady heat equation with flux boundary

conditions in a moving domain: ALE methods.

Figure 1.3 Contour plot of the solution.

1.1 Background: ALE methods and the evaluation of time-derivatives in
moving domains

oomph-lib's UnsteadyHeatEquations, the equation class that forms the basis for the isoparametric
QUnsteadyHeatElements, is based on the Arbitrary Lagrangian Eulerian (ALE) formulation of the weak form
of the governing PDE, (1). Within each element, the solution is represented by interpolation between the element's
N

(E)
node nodal values U (E)

j (t) (i = 1, ..., N
(E)
node) , i.e.

u =

N
(E)
node∑
j=1

U
(E)
j (t) ψj(s1, s2), (7)

where s1 and s2 are the element's two local coordinates. The mapping between the local and global (Eulerian)
coordinates is based on the interpolation between the nodal coordinates,

xi(s1, s2) =

N
(E)
node∑
j=1

X
(E)
ij (t) ψj(s1, s2), (i = 1, 2) (8)

where X(E)
ij (t) is the i-th global (Eulerian) coordinate of node j in the element. In moving-domain problems, where

the nodal positions vary as function of time, the time-derivative of the nodal value, dUj(t)/dt , represents the rate-
of-change of u at the moving node, rather than the time-derivative of u at a fixed Eulerian position,
∂u/∂t, the quantity required in the PDE, (1).
The rate of change of u at a moving node, dUj(t)/dt , may also be expressed by the material derivative,

Du

Dt

∣∣∣∣
node j

=
∂u

∂t
+

2∑
i=1

vij
∂u

∂xi

where

vij =
dX

(E)
ij

dt
is the i-th velocity component of node j, often referred to as the "mesh velocity". The rate of change of u , experienced
at the (fixed) spatial position that coincides with the current position of node j is therefore given by

∂u

∂t
=
dU

(E)
j

dt
−

2∑
i=1

dX
(E)
ij

dt

N
(E)
node∑
k=1

U
(E)
k

∂ψk

∂xi

 .

Generated by Doxygen

1.2 Global parameters and functions 5

This is the form in which the time-derivative in (1) is implemented in oomph-lib's unsteady heat elements. The
mesh velocity is determined automatically, using the Node's positional TimeStepper and the history values of
the nodal positions. [By default, the positional TimeStepper is the same as the TimeStepper used for the
evaluation of the time-derivatives of the nodal values; a different one may be assigned with the access function
Node::position_time_stepper_pt().] This is why it is important to initialise the "previous nodal posi-
tions" in computations on fixed meshes, as demonstrated in the exercise in our earlier example:
The previous nodal positions are initialised to zero when a Node is first created. Therefore, if the previous positions
are not overwritten with the actual nodal positions, the positional TimeStepper would compute non-zero mesh
velocities, even though the Nodes are stationary.
oomph-lib's unsteady Newton solvers automatically advance the time-history of the nodal positions when com-
puting a new timestep. Performing computations on moving meshes is therefore extremely straightforward: The
only task to be performed by the "user" is to update the nodal positions before a new timestep is taken. This is best
done in the function Problem::actions_before_implicit_timestep().
The update of the nodal positions may be performed "manually", by assigning new nodal positions directly, using the
function Node::x(...). However, in most cases, the deformation of the domain will be driven by the motion of
its boundaries. We discussed in an earlier example, that in oomph-lib curvilinear, moving boundaries
are typically represented by (time-dependent) GeomObjects which define the MacroElement boundaries of
the Domain object associated with the Mesh. In this case, the update of the nodal positions may be performed by
updating the parameters that control the shape of the GeomObject and calling the Mesh's node-update function
Mesh::node_update(), as illustrated in the earlier example.
It is also possible (and, in fact, much easier) to include the time-dependence of the domain boundaries into the
definition of the GeomObject, by making its shape, described by GeomObject::position(...), a function
of time. In that case, the update of the nodal positions in response to the boundary motion merely requires a
call to Mesh::node_update() in Problem::actions_before_implicit_timestep(). This is the
approach we take in the present problem.

1.2 Global parameters and functions

As usual, we store the problem parameters in a namespace, TanhSolnForUnsteadyHeat, in which we also
specify the source function, the prescribed flux along the Neumann boundary and the exact solution. The names-
pace is identical to that used in the fixed domain example.

1.3 Representing the moving curvilinear domain boundary by a
time-dependent GeomObject

As discussed above, we will incorporate the time-dependence of the moving curvilinear boundary into the specifi-
cation of the GeomObject that defines that boundary. For this purpose we represent the elliptical boundary by
the GeomObject MyEllipse. Its constructor stores the geometric parameters (the mean values of the ellipse's
half axes, a and b , the amplitude of their temporal variations â and b̂ , and the period of the oscillation, T̂ , in its
private member data. We also store a pointer to a Time object to give the GeomObject access to the "current"
and "previous" values of the "continuous time". The destructor can remain empty.
//============start_of_MyEllipse===
/// Oscillating ellipse
/// \f[x = (a + \widehat{a} \sin(2\Pi t/T)) \cos(\xi) \f]
/// \f[y = (b + \widehat{b} \sin(2\Pi t/T)) \sin(\xi) \f]
//===
class MyEllipse : public GeomObject
{
public:

/// Constructor: Pass half axes, amplitudes of their variation, period
/// of oscillation and pointer to time object.
MyEllipse(const double& a, const double& b,

const double& a_hat, const double& b_hat,
const double& period, Time* time_pt) :

GeomObject(1,2), A(a), B(b), A_hat(a_hat), B_hat(b_hat),
T(period), Time_pt(time_pt) {}

/// Destructor: Empty
virtual ~MyEllipse() {}

The "steady" version of the position(...) function must return the position vector to the point on the Geom←↩

Object, identified by its intrinsic coordinate xi, and evaluated at the current value of the continuous time, which
we extract from Time::time():
/// Current position vector to material point at

Generated by Doxygen

../../two_d_unsteady_heat/html/index.html
../../../poisson/fish_poisson2/html/index.html
../../../poisson/fish_poisson2/html/index.html
../../two_d_unsteady_heat/html/index.html

6
Example problem: Spatially adaptive solution of the 2D unsteady heat equation with flux boundary

conditions in a moving domain: ALE methods.

/// Lagrangian coordinate xi
void position(const Vector<double>& xi, Vector<double>& r) const
{
// Get current time:
double time=Time_pt->time();
// Position vector
r[0] = (A+A_hat*sin(2.0*MathematicalConstants::Pi*time/T))*cos(xi[0]);
r[1] = (B+B_hat*sin(2.0*MathematicalConstants::Pi*time/T))*sin(xi[0]);
} // end of position(...)

The "time-dependent" version of the position(...) function must return the position vector to the Geom←↩

Object, evaluated at the t - th previous timestep. The value of the continuous time at that timestep is available
from from Time::time(t):
/// Parametrised position on object: r(xi). Evaluated at
/// previous time level. t=0: current time; t>0: previous
/// time level.
void position(const unsigned& t, const Vector<double>& xi,

Vector<double>& r) const
{
// Get current time:
double time=Time_pt->time(t);

// Position vector
r[0] = (A+A_hat*sin(2.0*MathematicalConstants::Pi*time/T))*cos(xi[0]);
r[1] = (B+B_hat*sin(2.0*MathematicalConstants::Pi*time/T))*sin(xi[0]);
} // end of position(...)

We omit the code that defines the private member data.

1.4 The main function

Since the deformation of the domain and the update of the nodal positions will be handled automatically by adding a
call to Mesh::node_update() to Problem::actions_before_implicit_timestep(), the driver
code for this problem is exactly the same as that in the previous example in a fixed domain.

1.5 The Problem class

The Problem class and most of its member functions are exactly the same as in the previous example.

1.6 The Problem constructor

The Problem constructor is identical to the fixed-mesh version in the previous example, apart from the
fact that we use the MyEllipse GeomObject to define the curvilinear Mesh boundary. Here is the relevant
code fragment:
// Setup mesh
//-----------
// Build geometric object that forms the curvilinear domain boundary:
// an oscillating ellipse
// Half axes
double a=1.0;
double b=1.0;
// Variations of half axes
double a_hat= 0.1;
double b_hat=-0.1;
// Period of the oscillation
double period=1.0;
// Create GeomObject
Boundary_pt=new MyEllipse(a,b,a_hat,b_hat,period,Problem::time_pt());
// Start and end coordinates of curvilinear domain boundary on ellipse
double xi_lo=0.0;
double xi_hi=MathematicalConstants::Pi/2.0;
// Now create the bulk mesh. Separating line between the two
// elements next to the curvilinear boundary is located half-way
// along the boundary.
double fract_mid=0.5;
Bulk_mesh_pt = new RefineableQuarterCircleSectorMesh<ELEMENT>(
Boundary_pt,xi_lo,fract_mid,xi_hi,time_stepper_pt());

1.7 Actions before timestep

As discussed above, the addition of a single line to Problem::actions_before_implicit_←↩

timestep() suffices to update the nodal positions in response to the changes in the domain boundary.
//=========start of actions_before_implicit_timestep===============================
/// Actions before timestep: Update the domain shape, then set the
/// boundary conditions for the current time.

Generated by Doxygen

../../two_d_unsteady_heat_adapt/html/index.html
../../two_d_unsteady_heat/html/index.html
../../two_d_unsteady_heat/html/index.html

1.8 Setting the initial condition 7

//==
template<class ELEMENT>
void RefineableUnsteadyHeatProblem<ELEMENT>::actions_before_implicit_timestep()
{
// Update the domain shape
Bulk_mesh_pt->node_update();

The rest of this function is identical to the that in the fixed-domain version and updates the nodal values
on the Dirichlet boundaries according to the values given by the exact solution.

1.8 Setting the initial condition

The only other change to the code occurs in the assignment of the initial conditions. The Nodes' positional history
values are given by the positions at which the Nodes would have been at previous timesteps. Similarly, the history
values themselves must be computed by evaluating the exact solution at the position at which the Nodes would
have been at those timesteps.
This is achieved with a few minor changes to the previous version of this function. We loop over the previous
timesteps, reconstruct the value of the continuous time at that timestep, and temporarily over-write the value of
the continuous time stored in Time::time(). This ensures that the call to MyEllipse::position(...)
during the node update operation returns the position vector to the domain boundary at that timestep. Following
the update of the nodal positions (which moves them into the position they would have occupied at the previous
timestep) we copy their positions and the value of the exact solution into the appropriate history values. Here is the
relevant code fragment from the set_initial_condition() function:

// Loop over current & previous timesteps (in outer loop because
// the mesh also moves!)
for (int itime=nprev_steps;itime>=0;itime--)
{
double time=prev_time[itime];

// Set global time (because this is how the geometric object refers
// to continous time
time_pt()->time()=time;

cout « "setting IC at time =" « time « std::endl;

// Update the mesh for this value of the continuous time
// (The wall object reads the continous time from the same
// global time object)
Bulk_mesh_pt->node_update();

// Loop over the nodes to set initial guess everywhere
for (unsigned jnod=0;jnod<num_nod;jnod++)
{
// Get nodal coordinates
x[0]=Bulk_mesh_pt->node_pt(jnod)->x(0);
x[1]=Bulk_mesh_pt->node_pt(jnod)->x(1);

// Get intial solution
TanhSolnForUnsteadyHeat::get_exact_u(time,x,soln);

// Assign solution
Bulk_mesh_pt->node_pt(jnod)->set_value(itime,0,soln[0]);

// Loop over coordinate directions
for (unsigned i=0;i<2;i++)
{
Bulk_mesh_pt->node_pt(jnod)->x(itime,i)=x[i];
}

}
} // end of loop over previous timesteps

1.9 Comments and Exercises

While the spatial adaptivity resolves the rapid spatial variations in the solution, the time-integration with a fixed
timestep introduces errors during the phases when the solution undergoes rapid temporal variations. The
animations of the exact and computed solutions show clearly that the computed solution lags behind the exact
one during these phases. In the next example we will therefore demonstrate how to combine temporal and
spatial adaptivity.

1.10 Source files for this tutorial

• The source files for this tutorial are located in the directory:

Generated by Doxygen

../../two_d_unsteady_heat/html/index.html
../figures/step_soln.avi
../figures/step_soln.avi
../../two_d_unsteady_heat_2adapt/html/index.html

8
Example problem: Spatially adaptive solution of the 2D unsteady heat equation with flux boundary

conditions in a moving domain: ALE methods.

demo_drivers/unsteady_heat/two_d_unsteady_heat_ALE/

• The driver code is:

demo_drivers/unsteady_heat/two_d_unsteady_heat_ALE/two_d_unsteady_←↩

heat_ALE.cc

1.11 PDF file

A pdf version of this document is available.

Generated by Doxygen

../../../../demo_drivers/unsteady_heat/two_d_unsteady_heat_ALE/two_d_unsteady_heat_ALE.cc
../../../../demo_drivers/unsteady_heat/two_d_unsteady_heat_ALE/two_d_unsteady_heat_ALE.cc

	1 Example problem: Spatially adaptive solution of the 2D unsteady heat equation with flux boundary conditions in a moving domain: ALE methods.
	1.1 Background: ALE methods and the evaluation of time-derivatives in moving domains
	1.2 Global parameters and functions
	1.3 Representing the moving curvilinear domain boundary by a time-dependent GeomObject
	1.4 The main function
	1.5 The Problem class
	1.6 The Problem constructor
	1.7 Actions before timestep
	1.8 Setting the initial condition
	1.9 Comments and Exercises
	1.10 Source files for this tutorial
	1.11 PDF file

