Go to the source code of this file.
Classes | |
| class | EighthSpherePoissonProblem< ELEMENT > |
| ///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// More... | |
Namespaces | |
| namespace | TanhSolnForPoisson |
| Namespace for exact solution for Poisson equation with sharp step. | |
Functions | |
| void | TanhSolnForPoisson::get_exact_u (const Vector< double > &x, Vector< double > &u) |
| void | TanhSolnForPoisson::get_exact_u (const Vector< double > &x, double &u) |
| Exact solution as a scalar. | |
| void | TanhSolnForPoisson::get_source (const Vector< double > &x, double &source) |
| Source function to make it an exact solution. | |
| int | main (int argc, char *argv[]) |
| ///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// | |
Variables | |
| double | TanhSolnForPoisson::Alpha =1 |
| Parameter for steepness of step. | |
| double | TanhSolnForPoisson::N_x =-1.0 |
| Orientation (non-normalised x-component of unit vector in direction of step plane) | |
| double | TanhSolnForPoisson::N_y =-1.0 |
| Orientation (non-normalised y-component of unit vector in direction of step plane) | |
| double | TanhSolnForPoisson::N_z =1.0 |
| Orientation (non-normalised z-component of unit vector in direction of step plane) | |
| double | TanhSolnForPoisson::X_0 =0.0 |
| Orientation (x-coordinate of step plane) | |
| double | TanhSolnForPoisson::Y_0 =0.0 |
| Orientation (y-coordinate of step plane) | |
| double | TanhSolnForPoisson::Z_0 =0.0 |
| Orientation (z-coordinate of step plane) | |
| int main | ( | int | argc, |
| char * | argv[] | ||
| ) |
///////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////
Driver for 3D Poisson problem in eighth of a sphere. Solution has a sharp step. If there are any command line arguments, we regard this as a validation run and perform only a single adaptation.
Definition at line 326 of file eighth_sphere_poisson.cc.
References EighthSpherePoissonProblem< ELEMENT >::doc_solution(), TanhSolnForPoisson::get_source(), and EighthSpherePoissonProblem< ELEMENT >::mesh_pt().